Dos planetas extremos en un mismo sistema planetario


El Mundo

  • El astrónomo Rafael Bachiller nos descubre en esta serie los fenómenos más espectaculares del Cosmos. Temas de palpitante investigación, aventuras astronómicas y novedades científicas sobre el Universo analizadas en profundidad.
La estrella CSVO-30 y su planeta más lejano observados con el telescopio VLT. ESO

La estrella CSVO-30 y su planeta más lejano observados con el telescopio VLT. ESO

Los astrónomos han encontrado un sistema planetario muy peculiar rodeando a la estrella CVSO-30. Uno de sus planetas está tan próximo a la estrella que su periodo orbital es de tan solo 11 días terrestres, mientras que otro está tan alejado que su periodo supera los 27.000 años. Este sistema ilustra la sorprendente variedad de los planetas que pueblan nuestra galaxia.

Planetas para todos los gustos

Desde el descubrimiento del primer planeta orbitando a una estrella diferente del Sol hace ahora poco más de 20 años, la búsqueda de exoplanetas está resultando ser una de las tareas más fascinantes de la historia de la astronomía. El número de exoplanetas descubiertos aumenta rápidamente cada día: se conocen hoy más de 3.500 planetas extrasolares que están alojados en unos 2.600 sistemas planetarios diferentes.

Uno de los aspectos más apasionantes de esta búsqueda es la capacidad de los astrónomos para descubrir planetas de una gran variedad. Se conocen planetas que tan solo son unas veces más masivos que la Luna, mientras que otros son muchas veces (hasta 29) más masivos que Júpiter. Hay exoplanetas muy calientes, por estar próximos a sus estrellas, y otros son increíblemente fríos. Y, lo que se considera uno de los resultados de mayor importancia, prácticamente todos los tipos de estrellas tienen la capacidad de estar rodeadas por un cortejo de planetas. Se estima que, en término medio, en la Vía Láctea hay al menos un planeta por estrella, por lo que el número de planetas en nuestra Galaxia podría aproximarse al billón y, de estos, el número de planetas de tipo terrestre y potencialmente habitables se estima en unos 40 miles de millones.

Hace tan solo unos días que hemos leído la excelente noticia en ElMundo.es de que la estrella más cercana a la Tierra, Próxima Centauri, que está situada a poco más de 4 años luz de la Tierra, posee un planeta potencialmente habitable. Sin embargo, hoy vamos a hablar de dos mundos extremos en los que la vida (de tipo terrestre) no podría tener lugar. Ambos están en el sistema planetario de la estrella CVSO-30.

Muy cerca

Situada a 1200 años luz de distancia, CVSO-30 es una estrella de tipo T-Tauri, por lo tanto una estrella de masa similar al Sol pero mucho más joven, que forma parte de la asociación estelar 25 Orionis. Su masa se estima en 0,4 masas solares, y su edad en tan solo 2,4 millones de años, mientras que la edad del Sol es aproximadamente el doble. En el año 2012, mediante la técnica de los tránsitos se detectó de manera indirecta un planeta muy próximo a esta estrella, el conocido como CVSO-30b.

Ya fue sorprendente encontrar un exoplaneta en una estrella tan joven, pero al calcular las propiedades de CVSO-3b, se encontró otra sorpresa. La masa del exoplaneta es de unas 5 a 6 veces la masa de Júpiter, es decir se trata de su super-júpiter como los que abundaban en las primeras búsquedas (que favorecían las detecciones de los planetas más grandes). Hasta aquí nada de extraordinario. Lo que resulta peculiar es que este planeta orbita a una distancia de su estrella de apenas 1,2 millones de kilómetros (como referencia pensemos que Mercurio está a unos 58 millones de kilómetros del Sol). Al ser la órbita tan pequeña, resulta que el periodo orbital de CVSO-30b (la duración de su ‘año’) es también muy corto: tan solo 11 días terrestres.

Muy lejos

La técnica de los tránsitos consiste en observar las pequeñísimas disminuciones en la intensidad de una estrella cuando uno de sus planetas pasa orbitando por delante de ella. Esta técnica y la de la velocidad radial (mediante la que se mide el ligero movimiento de la estrella por el efecto gravitatorio del planeta) son los dos métodos más utilizados para detectar la inmensa mayoría de los exoplanetas conocidos hasta la fecha. Tan solo una docena de planetas han sido observados directamente mediante imágenes directas, pues obtener imágenes de objetos tan pequeños y pocos luminosos como los exoplanetas es algo que está en el límite de las capacidades de los mayores telescopios actuales.

Pues bien, hace unas semanas que un equipo internacional de astrónomos liderado por Tobias Schmidt del Observatorio de Hamburgo han descubierto mediante imágenes directas otro planeta sorprendente en torno a CVSO-30: el exoplaneta CVSO-30c. Como en el caso de su compañero se trata de un super-júpiter, pues su masa es de unas 5 veces más grande que la de nuestro Júpiter. En contraste con otros exoplanetas de su clase, que suelen ser muy rojos, CVSO-30c brilla más en el azul, lo que para los astrónomos es un indicio de su juventud. Se piensa que la edad de este planeta no alcanza los 10 millones de años. Pero lo que resulta sumamente sorprendente es que este planeta orbita lejísimos de su estrella, unas 660 veces más lejos que la Tierra del Sol (para orientación pensemos que Neptuno está 30 veces más lejos del Sol que la Tierra). Al tener una órbita tan lejana, resulta que el periodo orbital de CVSO-30c es muy largo: su ‘año’ dura unos 27.250 años terrestres.

Colisión planetaria

Es muy improbable que estos dos planetas se formasen originalmente en estas órbitas tan extremas, pero cómo han acabado en ellas es un auténtico misterio. Los astrónomos especulan que quizás ambos planetas CVSO-30b y CVSO-30c se formaron originalmente a una distancia de su estrella comparable a las que separan a Júpiter y Saturno del Sol. Una colisión entre ambos super-júpiteres (o una aproximación muy cercana entre ellos) pudo enviar a los planetas a sus órbitas actuales.

Entre un planeta tan extremadamente cercano a su estrella y otro tan extremadamente lejano, los contrastes son espectaculares. En el planeta cercano, CVSO-30b, el año dura 11 días terrestres y la temperatura es de unos 3000 grados Celsius; mientras que en el planeta lejano, CVSO-30c, el año dura 27.250 años terrestres y la temperatura está por debajo de los 250 grados Celsius bajo cero.

Así, el sorprendente sistema planetario de CVSO-30 viene a ilustrar la maravillosa diversidad del universo. La investigación de los exoplanetas se encuentra aún en su infancia, pero no cabe duda de que la construcción de telescopios progresivamente mayores y más precisos nos conducirá a una serie de descubrimientos en los que los planetas se manifestarán con una variedad prácticamente infinita.

También interesante

 

  • Para la detección del planeta CVSO-30c, el equipo de Tobias Schimdt ha utilizado algunos de los telescopios más potentes del mundo como el Keck en Hawaii, el VLT de ESO en Cerro Paranal (Chile) y el Centro Astronómico Hispano-Alemán (CSIC-MPG) de Calar Alto, en la provincia de Almería.
  • Los resultados de Schmidt et al. se han publicado en un artículo titulado «Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30» en la revista europea Astronomy and Astrophysics, el manuscrito puede consultarse aquí.
  • Otro trabajo reciente con observaciones de CVSO-30b y una discusión sobre el estado evolutivo del sistema ha sido publicado por St. Raetz (Agencia Espacial Europea) y colaboradores en la revista británica MNRAS. El manuscrito puede consultarse aquí.

    Rafael Bachiller es director del Observatorio Astronómico Nacional (Instituto Geográfico Nacional) y académico de la Real Academia de Doctores de España.

 

Un «anillo de diamantes» brilla en el cielo


ABC.es

  • Esta hermosa burbuja azul, aparecida a unos 1.500 años luz de la Tierra, sorprende por su perfecta forma circular

Un «anillo de diamantes» brilla en el cielo

ESO La nebulosa planetaria Abell 33, captada utilizando el telescopio VLT (Very Large Telescope) de ESO

Un equipo de astrónomos ha captado desde Chile una de esas preciosas imágenes cósmicas que, como ocurre a veces al mirar las nubes, parecen mostrarnos objetos imposibles en el cielo. Se trata de una fotografía de la nebulosa planetaria PN A66 33, más conocida como Abell 33, una hermosa burbuja azul situada a unos 1.500 años luz de la Tierra y creada durante el proceso de envejecimiento de una estrella. Resulta que, de forma casual, la nebulosa está ahora alineada con una estrella (en la imagen, en primer plano), lo que da como resultado un parecido asombroso con un anillo de diamantes. Esta joya cósmica es inusualmente simétrica, con una perfecta forma circular.

La mayor parte de las estrellas con masas similares a la de nuestro Sol acaban sus vidas como enanas blancas, cuerpos pequeños, calientes y muy densos que se enfrían muy despacio a lo largo de miles de millones de años. En el camino hacia la fase final de sus vidas, las estrellas lanzan al espacio sus atmósferas y crean nebulosas planetarias, coloridas nubes brillantes de gas que envuelven a las pequeñas y refulgentes reliquias estelares, explican desde el Observatorio Europeo Austral (ESO).

En esta imagen, captada por el telescopio VLT (Very Large Telescope) de ESO, la nebulosa planetaria Abell 33 aparece asombrosamente redonda, algo muy poco común en estos objetos, ya que normalmente algo perturba la simetría y acaban adquiriendo formas irregulares.

Un compromiso casual

La refulgente estrella situada en el borde de la nebulosa crea el efecto final del diamante, como si se tratara de un anillo de compromiso centelleante. Se trata tan solo de un alineamiento casual: la estrella, llamada HD 83535, se encuentra en primer plano, frente a la nebulosa, a medio camino entre la Tierra y Abell 33, justo en el lugar adecuado para embellecer aún más la imagen.

En el interior de la nebulosa, visible como una diminuta perla blanca y ligeramente descentrada, puede observarse el remanente de la estrella progenitora de Abell 33 en el proceso de transformarse en una enana blanca. Aún brilla más que nuestro Sol y emite la suficiente cantidad de radiación ultravioleta como para hacer que resplandezca la burbuja de atmósferas expulsadas al espacio.

Abell 33 es uno de los 86 objetos incluidos en el Catálogo Abell de Nebulosas Planetarias creado por George Abell en 1966. Abell también rastreó el cielo en busca de cúmulos de galaxias, recopilando el Catálogo Abell, con unos 4.000 cúmulos, tanto en el hemisferio norte como en el hemisferio sur del cielo.

Astrónomos descubren la mayor estrella amarilla hasta el momento


La Vanguardia

  • Su tamaño es 1.300 veces el diámetro del Sol, lo que la convierte en una de os diez astros más grandes detectados hasta el momento

Astrónomos descubren la mayor estrella amarilla hasta el momento

Berlín. (EFE).- El Observatorio Europeo Austral (ESO) ha descubierto la mayor estrella amarilla -con más de 1.300 veces el diámetro del Sol-, lo que la convierte en una de las diez estrellas más grandes detectadas hasta el momento, informó hoy este centro en un comunicado.

Esta hipergigante, detectada con el interferómetro del telescopio VLT (Very Large Telescope) del observatorio de la Costa Azul en Niza, Francia, forma parte de un sistema compuesto por dos estrellas, donde la segunda, de menor tamaño, se encuentra en contacto con la hipergigante.

Las investigaciones de la HR 5171 A (1), como se conoce formalmente a la estrella amarilla, han sido realizadas durante sesenta años, algunas veces incluso por aficionados, e indican que este extraño objeto, mayor de lo esperado, cambia muy rápido y ha sido detectado en una fase muy breve e inestable de su vida.

Debido a esta inestabilidad, las hipergigantes amarillas expelen material hacia el exterior, formando una atmósfera grande y extendida alrededor de la estrella.

Se convierte así en la estrella amarilla más grande conocida y entra en la lista de las diez estrellas más grandes, con un 50% más de tamaño que la famosa supergigante roja Betelgeuse y alrededor de un millón veces mas brillante que el Sol.

Los astrónomos utilizaron en la investigación una técnica llamada interferometría que combina la luz recogida por múltiples telescopios individuales, recreando un telescopio gigante de más de 140 metros de tamaño.

«Las nuevas observaciones también mostraron que esta estrella tiene una compañera muy cercana, formando un sistema binario que nos ha sorprendido», describió hoy en un comunicado Olivier Chesneau, líder del equipo internacional de colaboradores de la investigación.

La estrella pequeña, que orbita la hipergigante cada 1.300 días «puede influir en el destino de HR 5171 A, por ejemplo, haciendo que expulse sus capas exteriores y modificando su evolución», añadió Chesneau.

Las amarillas hipergigantes son muy poco usuales. Solo se conocen alrededor de una docena en nuestra galaxia, y a pesar de la gran distancia que lo separa de la Tierra (cerca de 12.000 años luz), el objeto puede verse a ojo agudizando la vista.

Además, se ha observado que HR 5171 A se ha ido haciendo más grande y enfriándose en los últimos cuarenta años, y su evolución ha sido captada en pleno proceso, algo que se ha conseguido con muy pocas estrellas y puede ayudar a comprender los procesos evolutivos de las estrellas masivas en general.

La explosión más grande provocada por un agujero negro


El Mundo

Recreación artística de la explosión descubierta. | ESO

El Observatorio Austral Europeo (ESO, por sus siglas en inglés) ha descubierto la explosión más grande provocada por un agujero negro que se ha observado hasta ahora. Utilizando el telescopio VLT (Very Large Telescope), un equipo de astrónomos ha detectado un cuásar con la emisión más energética detectada hasta el momento, al menos cinco veces más potente que las que se han observado hasta hoy.

Los cuásares son los intensos centros luminosos de las galaxias distantes alimentados por enormes agujeros negros. Aunque algunos cuásares destacan por atraer material, muchos eyectan ingentes cantidades de material hacia sus galaxias anfitrionas, y estos chorros juegan un papel muy importante en la evolución galáctica. Pero, hasta ahora, los chorros de cuásares que se habían observado, no eran tan potentes como predecían los teóricos.

«La velocidad a la que es expulsada esta energía por la enorme masa de material eyectado desde este cuásar (conocido como SDSS J1106+1939) es, al menos, equivalente a dos millones de millones de veces la potencia que emana del Sol. A su vez, implica que es cien veces más potente que la producción energética total de nuestra galaxia, la Vía Láctea, — es una eyección verdaderamente monstruosa,» afirma el investigador principal del equipo, Nahum Arav (Virginia Tech, EEUU).

Numerosas simulaciones teóricas sugieren que el impacto de estas eyecciones en las galaxias del entorno puede resolver varios enigmas de la cosmología moderna, incluyendo cómo la masa de una galaxia está asociada a la masa de su agujero negro central, y por qué hay tan pocas galaxias grandes en el universo. Sin embargo, hasta ahora no se sabía con certeza si los cuásares eran capaces de producir chorros lo suficientemente potentes como para producir estos fenómenos.

Las eyecciones descubiertas se encuentran a unos años mil años luz de distancia del agujero negro que los genera. El análisis del equipo muestra que el cuásar pierde al año una masa de, aproximadamente, 400 veces la masa del Sol, moviéndose a una velocidad de unos 8.000 kilómetros por segundo.

El cuásar ha sido captado gracias al instrumento X-shooter del telescopio VLT que ha permitido obtener con el máximo detalle las imágenes. «Sin el espectrógrafo X-shooter del VLT no podríamos haber obtenido estos datos de alta calidad, que nos han permitido hacer el descubrimiento», afirma Benoit Borguet (Virginia Tech, EEUU), autor principal del nuevo artículo. «Por primera vez, pudimos explorar la región que rodea al cuásar con mucho detalle«.

Al tratarse de típicos ejemplos de un tipo de cuásar muy común, pero poco estudiado, estos resultados podrían aplicarse a cuásares luminosos de todo el universo. Borguet y sus colegas exploran actualmente una docena de cuásares similares para ver si, efectivamente, esto es así. El Universo podría estar lleno de estos monstruosos agujeros negros.

El planeta ‘vagabundo’


EL Mundo

Impresión artística del planeta errante. | ESO

Un mundo errante vaga por el espacio. El insólito objeto cósmico, detectado por el Observatorio Austral Europeo (ESO, por sus siglas en inglés), flota libremente por el Universo sin estrella anfitriona. Este cuerpo es el mejor candidato descubierto hasta ahora que podría clasificarse como planeta errante y el objeto de este tipo más cercano al Sistema Solar, ya que se encuentra a una distancia de unos 100 años luz.

Los planetas errantes son objetos de masa planetaria que vagabundean por el espacio sin estar atados a ninguna estrella. Ya se han encontrado antes posibles ejemplos de este tipo de objetos, pero, al no conocer sus edades, los astrónomos no podían saber si se trataba de planetas o de enanas marrones — estrellas ‘fallidas’ que perdieron la masa necesaria para desencadenar las reacciones que hacen brillar a las estrellas.

Pero ahora los astrónomos han descubierto un objeto, denominado CFBDSIR2149, que parece formar parte de un grupo cercano de estrellas jóvenes conocido como Asociación estelar de AB Doradus. Los investigadores encontraron el objeto en unas observaciones realizadas con el telescopio CFHT (Canada France Hawaii Telescope) y han aprovechado las capacidades del VLT (Very Large Telescope) de ESO para examinar en profundidad sus propiedades.

El lazo entre el nuevo objeto y la asociación estelar es la clave que permitirá a los astrónomos deducir la edad del nuevo objeto descubierto. Si el objeto está asociado a este grupo en movimiento -y por tanto es un objeto joven— es posible deducir aún más cosas sobre él, incluyendo su temperatura, su masa, y de qué está compuesta su atmósfera. Se trata del primer objeto de masa planetaria aislado identificado en una asociación estelar, y su relación con este grupo lo convierte en el candidato a planeta errante más interesante de los identificados hasta el momento.

«Buscar planetas alrededor de sus estrellas es similar a estudiar una mosca sentada a un centímetro de un distante y potente faro de coche«, afirma Philippe Delorme (Instituto de planetología y astrofísica de Grenoble), investigador principal del nuevo estudio. «Este objeto errante cercano nos da la oportunidad de estudiar la mosca con detalle sin la deslumbrante luz del faro estorbándonos».

Se cree que objetos como este se pueden crear de dos modos, ambos intrigantes: como planetas normales que han sido expulsados del sistema que los albergaba, o bien como objetos solitarios como las estrellas más pequeñas o enanas marrones.

Este tipo de planetas pueden ser una ventana a multitud de conocimientos sobre el Universo. «Estos objetos son importantes, ya que pueden ayudarnos tanto a comprender más sobre cómo pueden eyectarse planetas de sistemas planetarios, como a entender cómo objetos muy ligeros pueden resultar del proceso de formación de una estrella», afirma Philippe Delorme. «Si este pequeño objeto es un planeta que ha sido eyectado de su sistema original, saca de la nada la asombrosa imagen de mundos huérfanos, a la deriva en el vacío del espacio».

Sin embargo, las investigaciones aún deben continuar para certificar si este objeto es definitivamente un planeta errante.

El impacto de la ‘súpertormenta’ que azotó Saturno


El Mundo

Las tormentas pueden dejar importantes secuelas en la Tierra… y en el espacio. Precisamente, la sonda internacional Cassini y dos telescopios en tierra han detectado los ‘restos’ de una supertormenta que azotó Saturno entre 2010 y 2011.

Los dos telescopios, el VLT del Observatorio Europeo Austral (ESO, por sus siglas en inglés), en Chile, y el Telescopio Infrarrojo de la NASA, ubicado en la cima del Mauna Kea en Hawái han captado un enorme vórtice oval, oculto en la luz visible.

Este persiste pese a que las estructuras nubosas que causaron estragos a lo largo de una amplia franja de la atmósfera de Saturno se produjeron desde diciembre de 2010 hasta bien entrado el 2011.

Pero los científicos, basándose en los perfiles de temperatura, viento y composición de la atmósfera de Saturno, han descubierto que esas espectaculares formaciones nubosas eran sólo la punta del iceberg.

Una gran parte de la actividad asociada con la tormenta se desarrolló a escondidas de las cámaras ópticas, y sus secuelas todavía permanecen activas a día de hoy.

Fenómeno extremadamente inusual

«Es la primera vez que vemos algo así en cualquier planeta del Sistema Solar, es un fenómeno extremadamente inusual«, explica Leigh Fletcher, de la Universidad de Oxford, Reino Unido, y autor principal del artículo publicado en Icarus.

Cuando se desató la tormenta en la agitada cubierta nubosa de la troposfera de Saturno, las perturbaciones viajaron cientos de kilómetros aguas arriba,acumulando toda su energía en dos enormes ‘bolsas’ de aire caliente.

Se pensaba que estas bolsas se enfriarían en poco tiempo y se acabarían disipando, pero a finales de abril de 2011 – cuando ya habían dado una vuelta completa al planeta – los dos puntos calientes se fusionaron para generar un enorme vértice que durante algún tiempo llegó a ser más grande que la famosa Gran Mancha Roja de Júpiter.

La temperatura de este vórtice también era mucho mayor de lo esperado: el aire en su interior se encontraba unos 80°C más caliente que su entorno. Así mismo, en el interior del vórtice se detectaron fuertes picos en la concentración de ciertos gases, como el etileno o el acetileno.

La gran incógnita ahora es saber si la energía que provocó la súper tormenta se ha disipado completamente o si se producirán réplicas en un futuro cercano.

El remolino azul que alberga explosiones violentas de supernovas


El Mundo

Galaxia espiral NGC 1187 obtenida con el VLT. | ESO

Galaxia espiral NGC 1187 obtenida con el VLT. | ESO

El Observatorio Austral Europeo (ESO, por sus siglas en inglés) ha vuelto a divulgar una espectacular y nítida imagen gracias al telescopio VLT (Very Large Telescope). En la nueva instantánea se observa la galaxia NGC 1187 , una perfecta espiral a 60 millones de años luz de la Tierra en la constelación de Eridanus (El Río). Pese a su aparente tranquilidad, la galaxia ha albergado dos explosiones de supernova durante los últimos treinta años, la última en el año 2007. Esta imagen de la galaxia es la más precisa de las obtenidas hasta el momento

NGC 1187 parece una galaxia tranquila e inmutable, pero ha albergado dos explosiones de supernova desde 1982. Una supernova es una violenta explosión estelar, resultante de la muerte de una estrella masiva o de una enana blanca en un sistema binario. Las supernovas son uno de los fenómenos más energéticos del universo, y son tan brillantes que a menudo iluminan brevemente una galaxia al completo antes de desaparecer de nuestra vista durante semanas o meses. Durante este corto periodo de tiempo una supernova puede irradiar tanta energía como la que se estima que emitirá el Sol a lo largo de toda su vida.

En octubre de 1982, se descubrió la primera supernova en NGC 1187, desde La Silla, un observatorio de la ESO. Más recientemente, en 2007, el astrónomo aficionado Berto Monard, localizó desde Sudáfrica otra supernova en esta galaxia. Posteriormente, un equipo de astrónomos elaboró un detallado estudio y monitorizó esta supernova durante alrededor de un año utilizando numerosos telescopios.

Esta nueva imagen de NGC 1187 fue creada a partir de observaciones obtenidas como parte de este estudio y la supernova puede verse, mucho después de su pico de brillo máximo, cerca del extremo inferior de la imagen.

La galaxia NGC 1187 se ve casi de frente en la nueva imagen del VLT, que muestra con claridad su estructura espiral. Pueden verse alrededor demedia docena de brazos espirales prominentes, cada uno de los cuales contiene grandes cantidades de gas y polvo. Los rastros azulados de los brazos espirales indican la presencia de estrellas jóvenes nacidas de las nubes de gas interestelar.

En las zonas centrales brilla el protuberante centro en tonos amarillos. Esta parte de la galaxia está compuesta, principalmente, de estrellas viejas, gas y polvo. En el caso de NGC 1187, más que un centro redondeado, hay una sutil estructura central en forma de barra. Se cree que esta característica forma barrada actúa como un mecanismo que canaliza el gas procedente de los brazos espirales hacia el centro, aumentando la formación estelar en esa zona.

En los alrededores de la galaxia, pueden verse muchas más galaxias más débiles y distantes. Algunas incluso brillan a través del disco de NGC 1187. Sus tonos predominantemente rojizos contrastan con los cúmulos de estrellas azul pálido de los objetos más cercanos.

Estos datos fueron obtenidos utilizando el instrumento FORS1, instalado en el Very Large Telescope de ESO, en el Observatorio Paranal, en Chile.

Una nueva técnica para explorar las atmósferas de los planetas fuera del Sistema Solar


El Mundo

Impresión artística del exoplaneta 'Tau Boötis b' y su estrella. | ESO

Impresión artística del exoplaneta ‘Tau Boötis b’ y su estrella. | ESO

‘Tau Boötis b’ fue uno de los primeros exoplanetas descubiertos en los años 90. Quince años después, sigue siendo uno de los más cercanos que se conocen y eso teniendo en cuenta que ya se ha confirmado la existencia de 750 planetas fuera de nuestro Sistema Solar, a los que suman alrededor de 2.000 candidatos a entrar en la lista.

‘Tau Boötis b’ es un gran ‘júpiter caliente’ que orbita muy cerca de su estrella anfitriona. Pese a que su estrella anfitriona es fácilmente visible, hasta ahora este planeta solo podía detectarse por sus efectos gravitatorios sobre la estrella.

Un equipo internacional de astrónomos ha ideado una nueva e ingeniosa técnica que permite estudiar la atmósfera de un exoplaneta en detalle, incluso sin la necesidad de que pase delante de su estrella anfitriona. Los detalles de este estudio se publican en la revista ‘Nature’.

Por primera vez, han estudiado la atmósfera del planeta y han medido su órbita y su masa de forma muy precisa, resolviendo así un obstáculo que han tenido durante unos 15 años.

Lo han logrado usando el ‘Very Large Telescope’ (VLT) del Observatorio Europeo Austral (ESO), situado en el Observatorio Paranal (Chile), para captar directamente el débil brillo del planeta ‘Tau Boötis b’. Se combinaron observaciones infrarrojas de alta calidad (en longitudes de onda de alrededor de 2,3 micras) con un nuevo truco para extraer la débil señal del planeta a partir de la luz mucho más potente emitida por la estrella anfitriona.

Como muchos exoplanetas, ‘Tau Boötis b’ no transita el disco de su estrella (como en el reciente tránsito de Venus). Hasta ahora estos tránsitos eran esenciales para permitir el estudio de las atmósferas de los ‘jupiteres calientes’: cuando un planeta pasa frente a su estrella las propiedades de su atmósfera quedan impresas en la luz de la estrella. Como no hay luz estelar que brille a través de la atmósfera de Tau Boötis b hacia nosotros, la atmósfera del planeta no ha podido ser estudiada antes.

Cálculo de su masa

En una nota de prensa de ESO, el investigador principal de este trabajo, Matteo Brogi, del Observatorio Leiden, en Países Bajos, explica: «Gracias a las observaciones de alta calidad proporcionadas por el VLT y CRIRES fuimos capaces de estudiar el espectro del sistema con el nivel de detalle más alto logrado hasta el momento. Solo un 0,01% de la luz que vemos viene del planeta, y el resto proviene de la estrella, por lo que no fue fácil».

La mayoría de los planetas alrededor de otras estrellas fueron descubiertos por sus efectos gravitatorios sobre las estrellas anfitrionas, lo que limita la información que puede obtenerse de su masa: solo permiten obtener un límite inferior para la masa de un planeta. Así que ver directamente la luz del planeta ha permitido a los astrónomos medir el ángulo de la órbita del planeta y, de ahí, extraer su masa con precisión.

Composición de la atmósfera

Además de detectar el brillo de la atmósfera y de medir la masa de ‘Tau Boötis b’, el equipo ha estudiado su atmósfera y ha medido la cantidad de monóxido de carbono existente, así como la temperatura a diferentes alturas por medio de una comparación hecha entre las observaciones y unos modelos teóricos. Uno de los resultados más sorprendentes de este trabajo ha sido que las nuevas observaciones indicaban una atmósfera con una temperatura que desciende a medida que aumenta la altura. Este resultado es exactamente el opuesto a la inversión térmica —un aumento en la temperatura a mayor altitud— encontrado en otros exoplanetas tipo Júpiter.

Por su parte, Ignas Snellen, coautor del artículo e investigador del Observatorio de Leiden, considera que a partir de ahora, los astrónomos podrán estudiar las atmósferas de los exoplanetas que no transitan a sus estrellas, así como medir sus masas de forma precisa, lo cual antes era imposible: «Es un gran paso adelante», asegura.

Descubrimiento realizado por el ESO El ‘esqueleto cósmico’


El Mundo

Una gigantesca concentración de galaxias, situada a una distancia de siete mil millones de años luz de la Tierra ha sido descubierta por un equipo de astrónomos del Observatorio Europeo Austral (ESO). El hallazgo ha sido posible gracias a la combinación de dos de los más poderosos telescopios mundiales, el VLT, situado en el desierto de Atacama, en Chile y el Telescopio Subaru en el observatorio Mauna Kea en Japón.

«La materia no está distribuida de forma uniforme en el Universo. En nuestro ‘vecindario cósmico’, las estrellas forman galaxias y las galaxias forman agrupaciones» explica Masayuki Tanaka, responsable del estudio. «La teoría más aceptada es que la materia también puede acumularse en las llamadas ‘redes cósmicas’, en las que las galaxias, encajadas unas con otras a través de filamentos crean gigantescas estructuras».

Estos filamentos, que tienen millones de años luz de longitud, constituyen el esqueleto del Universo; las galaxias se agrupan en torno a ellos al tiempo que inmensas agrupaciones cósmicas se forman en sus intersecciones, a la espera de más materia para digerir.

Los científicos intentan ahora determinar cómo nacen estas agrupaciones. Aunque grandes estructuras de este tipo habían sido observadas a poca distancia de la Tierra, no existían pruebas sólidas de su existencia en regiones distantes.

El hallazgo permitirá a los investigadores profundizar en el conocimiento de la red de galaxias en el universo. Para desentrañar esta ‘red cósmica’ el grupo de astrónomos ha medido la distancia que separa a la Tierra de 150 galaxias, lo que ha permitido obtener una reconstrucción tridimensional de la estructura.