Category: Ciencia



ABC.es

  • Sorprenden «in fraganti» a una supernova engullendo a una estrella compañera. Esto permitirá comprender mejor la cuasa de las supernovas de tipo Ia

Remanente generado tras una explosión de supernova de tipo Ia – NASA/CXC/U.Texas

Los astrónomos han logrado observar un evento cósmico del que hasta ahora apenas se tenían indicios. Por primera vez, han observado las etapas más iniciales de una explosión de supernova, en las que una gran ola de gas y energía engullen a una estrella vecina. Las observaciones, que han sido logradas gracias al telescopio robótico PROMPT (Chile), han sido publicadas recientemente en The Astrophysical Journal Letters, tal como ha informado la Universidad de Arizona.

«Ha sido una de las “capturas” más tempranas logradas. La explosión –de supernova– comenzó apenas un día o unas horas antes», ha explicado David Sand, astrónomo de la Universidad de Arizona y coautor de la investigación.

El fenómeno detectado es una supernova de tipo Ia, una explosión termonuclear ocurrida en el núcleo abandonado de una estrella muerta, y que se llama enana blanca. Estas gigantescas explosiones, que pueden hacer que en el cielo aparezca un nuevo punto de luz, se producen cuando una enana blanca atrapa el gas de una estrella compañera en un sistema binario (formado, efectivamente, por dos estrellas). Llegado cierto momento, la temperatura de la enana blanca sube tanto como para iniciar reacciones de fusión nuclear. Estas pueden activar una gran explosión termonuclear capaz de destruir a ambas.

Aunque los astrónomos han obtenido una inquietante diapositiva del momento preciso en que la supernova comienza a engullir a su estrella compañera, este «crimen» ocurrió hace millones de años. El evento, al que han designado como SN 2017cbv, tuvo lugar en la galaxia NGC 5643, y a una distancia de 55 millones de años luz. Por eso no ha sido hasta ahora, en concreto hasta el 10 marzo, cuando los astrónomos han podido observar el comienzo de la explosión de la supernova. A pesar de la increíble distancia a la que se encuentra el estallido, este fenómeno se ha convertido en una de las supernovas más cercanas detectadas en los últimos años.

La premura de los astrónomos ha sido clave. En primer lugar fue detectada por el proyecto del sondeo DLT 40, que en inglés quiere decir «distancias inferiores a los 40 Megaparsecs», y que se especializa en distancias inferiores a 120 millones de años luz. Este sondeo usa una red de telescopios que cada noche sigue de cerca el comportamiento de 500 galaxias.

Entre todos ellos, el PROMPT fue el primero en detectar el evento. En respuesta y en apenas cuestión de minutos, el astrónomo David Sand activó otra red de telescopios, la LCO («Las Cumbres Observatory»), para vigilar de cerca la evolución de la explosión SN 2017cbv.

La causa de las explosiones de estrellas

Estas observaciones pueden ayudar a comprender mejor cuál es el origen de las supernovas de tipo Ia, un fenómeno cuya naturaleza se ha debatido durante 50 años. «Para convertirse en una supernova de tipo Ia, una enana blanca no puede lograrlo por sí sola. Necesita algún tipo de compañera, y estamos tratando de averiguar cómo es esta», ha dicho David Sand.

Una teoría dice que estas supernovas ocurren cuando una enana blanca atrapa el gas de una estrella vecina. Otras que pueden ocurrir cuando dos enanas blancas giran una en torno a la otra y finalmente chocan y se fusionan.

Gracias a la rápida reacción de los telescopios, los astrónomos han podido detectar una curva de luz azulada que, según los científicos, solo puede haber sido causada si la supernova se originó a partir del primer mecanismo. «Creemos que lo que pasó fue el primer escenario», ha explicado Sand. «El aumento de la curva de luz se podría haber generado cuando el material de la enana blanca golpeó a su estrella compañera».

La muerte de una gran estrella

Los datos sugieren que esta vecina es una gran estrella, que mide al menos 20 radios solares. Cuando la enana blanca estalló, el gas creó una onda de choque que chocó con su compañera y emitió un pico de luz azulado y muy rico en luz ultravioleta, que no podría haber sido causado si las dos estrellas fueran enanas blancas.

«Hemos estado buscando este efecto, una supernova chocando con su estrella compañera, desde que se predijo en 2010», ha dicho Griffin Hosseinzadeh, investigador en la Universidad de California, Santa Bárbara, y primer autor del estudio. «Habíamos visto indicios antes, pero esta vez la evidencia es sobrecogedora. ¡Los datos son muy hermosos!».

Según Sand, es probable que las supernovas de tipo Ia sean causadas por los dos mecanismos: el choque de enanas blancas, o el «robo» del gas de una estrella grande por parte de una de estas.

«Observar una supernova como SN 2017cbv es un importante paso en la dirección de entender cuál es la causa más frecuente de estas supernovas», ha dicho David sand. «Si las capturamos cuando son realmente jóvenes, podemos entender mejor estos procesos, y esto nos permitirá comprender mejor el cosmos, incluyendo el misterio de la energía oscura».

Las supernovas de tipo Ia son uno de los «faros» más usados por los astrónomos para estimar distancias en el Universo. Por término medio, solo se produce una de estas explosiones cada siglo en una galaxia como la Vía Láctea. Por eso es muy importante rastrear un número alto de galaxias y además seguir de cerca a cada una de estas supernovas, especialmente al comienzo de la explosión.

 


ABC.es

  • Estrellas procedentes de la Gran Nube de Magallanes cruzan nuestra galaxia a una altísima velocidad

Representación artística de las estrellas en fuga. Se originan cuando las supernovas las liberan y la galaxia las lanza hacia el espacio – Amanda Smith

Todo lo que tiene gravedad tiene asociada una velocidad de escape. Esto hace que los cohetes solo puedan abandonar la Tierra si superan una velocidad de 40.320 kilómetros por hora, y que los agujeros negros tengan un horizonte de sucesos por debajo del cual nada, ni siquiera la luz, puede «huir» del abrazo de la gravedad. Aunque parezca sorprendente, las propias galaxias también tienen asociada una velocidad de escape, de forma que solo las estrellas que viajan con una suficiente rapidez pueden huir de su entorno.

Se ha descubierto que en el cielo del hemisferio Norte, y dentro de los límites de la Vía Láctea, hay un grupo de 20 estrellas hiperveloces, que viajan tan rápido como para dejar atrás nuestra galaxia. Pero un artículo publicado este martes en Monthly Notices of the Royal Astronomical Society ha concluido que estas en realidad son estrellas que proceden de otra galaxia. Después de recoger datos a través del «Sloan Digital Sky Survey» y de hacer simulaciones de ordenador, han descubierto que estas estrellas vienen de una galaxia enana que gira en torno a la Vía Láctea: la Gran Nube de Magallanes.

Normalmente las estrellas no viajan tan rápido como estas, salvo que algo muy poderoso ocurra en las inmediaciones. Las posibles explicaciones para su gran rapidez es que las estrellas hiperveloces hayan sido expulsadas del centro de la Vía Láctea por la acción del agujero negro supermasivo de su centro. Otras explicaciones proponen que la desintegración de una galaxia enana o la estructura caótica de ciertos cúmulos estelares podrían estar detrás de este comportamiento, digno de Usain Bolt. Sin embargo, ninguno de estos tres mecanismos explica por qué las estrellas hiperveloces de la Vía Láctea están en una zona muy concreta del cielo nocturno, y no también en otras partes, repartidas al azar.

«Las otras explicaciones no me satisficieron», ha explicado en un comunicado Douglas Boubert, primer autor del estudio e investigador en el Instituto de Astronomía de la Universidad de Cambridge (Reino Unido). «Estas estrellas hiperveloces están básicamente en las constelaciones de Leo y del Sextante, y no en otras partes. Así que nos preguntamos por qué».

Después de hacer simulaciones por ordenador, la única explicación que encajó está relacionada con uno de los fenómenos más impresionantes del Universo: las supernovas.

Estrellas a la fuga

Los astrónomos investigaron qué ocurriría si las estrellas hiperveloces, fueran en realidad estrellas «disparadas» después de explosiones de supernova. No es que una explosión las haya lanzado al espacio; lo que puede ocurrir está relacionado con que las supernovas ocurren a veces en estrellas binarias o dobles, formadas por una pareja que gira en torno a un centro común. Pues bien, ocurre que las dos estrellas giran en torno a sí mismas más rápido cuanto más cerca se encuentran. Así que, ¿qué ocurriría si, en una pareja muy próxima, una de las dos estrellas muriese y estallase en una supernova? Quizás la superviviente se quedaría de repente sola y sin compañera a la que aferrarse, por lo que su movimiento la lanzaría hacia el espacio a gran velocidad, convirtiéndola en una estrella a la fuga.

En las constelaciones de Leo y del Sextante hay al menos 20 estrellas en fuga. Se trata de grandes estrellas azules (lo que quieren decir que están muy calientes), que viajan a velocidades muy altas. Pero según los investigadores de la Universidad de Cambridge, sus velocidades son tan altas que no pueden haber partido de la Vía Láctea. Más bien recuerdan a un veloz proyectil disparado desde un tren de alta velocidad.

«Esas estrellas han saltado de un tren exprés, así que no me sorprende que sean tan rápidas», ha explicado Rob Izzard, coautor del estudio.

La galaxia lanzadera

Dicho tren es en realidad la Gran Nube de Magallanes. Se trata de una pequeña galaxia, que tiene una masa de solo el 10 de la masa de la Vía Láctea, pero que gira en torno a su vecina a una velocidad de vértigo, de cerca de 400 kilométros por cada segundo (1.440.000 kilómetros por hora). Por eso, cuando ocurre una supernova y una estrella sale disparada, suma su velocidad a la que llevaba la galaxia.

«Esto también explica su posición en el cielo, porque las estrellas hiperveloces son expulsadas a lo largo de la órbita de la Gran Nube de Magallanes hacia las constelaciones de Leo y del Sextante», ha añadido Izzard.

Para tratar de reconstruir esta película de dimensión y duración galácticas, los investigadores simularon el nacimiento y la muerte de estrellas en la Gran Nube de Magallanes en un tiempo de 2.000 millones de años. También tuvieron en cuenta la influencia de la gravedad de la pequeña galaxia y la Vía Láctea, y gracias a esto los autores pudieron predecir dónde deberían encontrarse las estrellas hiperveloces en fuga y compararlo con la posición donde efectivamente se encuentran.

Un aspersor de estrellas

Como si se tratara de un gran aspersor fuera de control, los autores han sugerido que la Gran Nube de Magallanes tiene cerca de 10.000 estrellas en fuga, dispersándose por el espacio. La mitad de ellas son tan rápidas como para escapar de la gravedad de la Vía Láctea, así que se convierten en estrellas hiperveloces.

A estas estrellas errantes y «libres» les aguarda el mismo destino que a las estrellas de su clase: las grandes estrellas azules. En algún momento quemarán todo el combustible y se derrumbarán sobre sí mismas a causa de la gravedad, engendrando una pequeña estrella de neutrones o incluso un agujero negro estelar. Como aviones derribados y sin control, estos cadáveres estelares seguirán su curso durante un tiempo indefinido. Por eso, los autores creen que además de 10.000 estrellas en fuga, hay un millón de estrellas de neutrones y de agujeros negros atravesando la Vía Láctea.

«Pronto sabremos si estamos en lo cierto», ha dicho Boubert. «El satélite Gaia, de la Agencia Espacial Europea (ESA), rastreará miles de millones de estrellas el año próximo, y entre ellas debería de haber un rastro de estrellas hiperveloces viajando entre la Gran Nube de Magallanes, en el sur, y las constelaciones de Leo y del Sextante, en el Norte».


ABC.es

  • Mide más de mil millones de años luz de extensión y en su interior no hay «nada»

La Vía Láctea se encuentra al borde de un gran vacío – Archivo

La Vía Láctea, nuestra galaxia, junto a todas sus compañeras, se encuentra en el borde mismo de un enorme vacío de más de mil millones de años luz de extensión y en cuyo interior no hay “nada”. Esa es la extraordinaria conclusión presentada por un grupo de cosmólogos en la reunión anual de la Sociedad Astronómica Americana, que se celebra estos días en Austin, Texas.

Ya en 2013, un estudio elaborado por la astrónoma Amy Barger y su entonces estudiante Ryan Keenan, de la Universidad de Winsconsin-Madison, mostraba que la galaxia en que vivimos, en el contexto de las estructuras a gran escala del Universo, reside justo en los límites de un gigantesco vacío, una oscura y enorme región de espacio que contiene muchas menos galaxias, estrellas y planetas de lo que podemos ver en nuestro vecindario cósmico más inmediato.

Ahora, un nuevo estudio llevado a cabo por otro astrónomo de la misma Universidad, también estudiante de Barger, no solo confirma la idea de que todos nosotros vivimos en el mayor de los vacíos conocidos hasta ahora en el Universo, sino que, además, ese hecho ayuda a reconciliar el aparente desacuerdo entre los dos modos que hay de medir la constante de Hubble, que los cosmólogos utilizan para describir la velocidad a la queel Universo se expande.

La citada discrepancia se produce por el simple hecho de que los resultados varían según cuál sea la técnica empleada para medir la expansión. “Pero independientemente de qué técnica se esté usando -afirma Ben Hoscheit, autor de la investigación- se debería obtener el mismo valor para la tasa de expansión actual. Afortunadamente, el hecho de vivir en un vacío nos ha ayudado a resolver esa discrepancia”.

La razón para ello es que un vacío así, con mucha más materia fuera tirando gravitatoriamente, puede afectar a las medidas de la constante de Hubble que se obtengan con una técnica que utiliza supernovas (relativamente cercanas). Por el contrario esa misma gravedad no tendrá efecto alguno sobre la medición si ésta se ha llevado a cabo usando la técnica que usa el Fondo Cósmico de Microondas (CMB), la radiación residual del Big Bang, que permea por igual todo el Universo.

Para Hoscheit, ambas técnicas son correctas, pero la que se basa en la observación de supernovas nos da un resultado “local”, mientras que la basada en el CMB nos ofrece resultados “cósmicos”.

Un queso de Gruyere

El trabajo se encuadra en el enorme esfuerzo que los cosmólogos están llevando a cabo para comprender mejor la estructura del Universo en que vivimos. Sabemos que, a una escala enorme, el Universo tiene el aspecto de un queso de Gruyere, o de una enorme tela de araña en 3D en el que la materia “normal” se distribuye en agujeros y filamentos. Los filamentos estan hechos de cúmulos y super cúmulos de galaxias, que a su vez están formadas por miles de millones de estrellas, gas, polvo y planetas. Y toda esa materia “normal” apenas supone el 5% de la masa total del Universo. El 95% restante, que no puede ser observado directamente, está hecho de materia y energía oscuras.

El “agujero” que contiene la Vía Láctea (y a nosotros con ella) es conocido como el “vacío KBC” (por Keenan, Barger y Lennox Cowie, de la Universidad de Hawaii), y es verdaderamente enorme. De hecho, es siete veces mayor que la media de otros vacíos observados, y tiene un radio de cerca de mil millones de años luz. Por ahora, es el mayor vacío conocido por la Ciencia.

Las primeras estimaciones de Keenan, de acuerdo con las de Barger, sostenían que el vacío KBC tenía la forma de una esfera, con una “cáscara” de grosor creciente hecha de galaxias, estrellas y materia de otros tipos. Algo así como una descomunal pompa de jabón con toda la materia concentrada en la superficie y casi totalmente vacía por dentro. Ahora, Hoscheit afirma en su nuevo análisis que esa visión parece confirmarse, ya que no queda descartada por ninguna otra evidencia observacional.

Por supuesto, observar la realidad en una escala tan enorme es algo que entraña para nosotros una gran dificultad. Sería como pedirle a una bacteria que dedujera que vivimos en la Tierra, y que ésta forma parte del Sistema Solar.

En palabras de Amy Barger, “resulta extremadamente difícil encontrar soluciones consistentes a partir de varias observaciones diferentes. Y lo que Ben (Hoscheit) ha demostrado es que el perfil de densidad medido por Keenan es consistente con las observaciones cosmológicas”.

O dicho en otras palabras, Hoscheit no ha podido encontrar objeción alguna, ni obstáculo observacional que vaya en contra de la conclusión de que la Vía Láctea reside en el borde mismo de un gigantesco vacío. Un vacío que, además, ha permitido resolver las discrepancias que existían al usar diferentes técnicas para medir la velocidad a la que el Universo se expande.


ABC.es

  • La misión ha localizado durante el último año un centenar de objetos celestes hasta ahora desconocidos, una treintena en el vecindario de nuestro planeta

Los objetos seguidos por Neowise en tres años de misión. Los círculos verdes representan los objetos cercanos a la Tierra (asteroides y cometas que vienen dentro de 1,3 unidades astronómicas del Sol; una unidad astronómica es la distancia de la Tierra al Sol). Los cuadrados amarillos son cometas. y los puntos grises representan todos los otros asteroides, que están en su mayoría en el cinturón principal entre Marte y Júpiter. Se muestran las órbitas de Mercurio, Venus, la Tierra y Marte. – NASA/JPL-Caltech/UCLA/JHU

La misión Neowise (Near-Earth Object Wide-Field Infrared Survey Explorer) de la NASA, dedicada a localizar, caracterizar y rastrear asteroides y cometas que se acercan a la Tierra, ha descubierto en su tercer año en funcionamiento nueve asteroides potencialmente peligrosos para nuestro planeta. En total, durante este último año la nave espacial ha identificado 97 objetos celestes hasta ahora desconocidos. De ellos, 28 eran objetos cercanos a la Tierra; 64, asteroides del cinturón principal y cinco, cometas.

La nave espacial ha caracterizado un total de 693 objetos cercanos a la Tierra desde que la misión fue reiniciada en diciembre de 2013. De ellos, 114 son nuevos (Puedes ver un vídeo aquí). «Neowise no sólo descubre asteroides y cometas previamente desconocidos, sino que proporciona excelentes datos sobre muchos de los que ya están en el catálogo», dice Amy Mainzer, investigadora principal de la misión en el Laboratorio de Propulsión a Chorro (JPL) de la NASA en Pasadena, California.

Los objetos cercanos a la Tierra (llamados NEOs, por sus siglas en inglés) son cometas y asteroides que han sido empujados por la atracción gravitatoria de los planetas de nuestro sistema solar en órbitas que les permiten entrar en la vecindad de la Tierra. Diez de los objetos descubiertos por Neowise en el último año han sido clasificados como asteroides potencialmente peligrosos, en función de su tamaño y sus órbitas. El pasado año, fueron ocho las rocas de este tipo localizadas. Su seguimiento resulta fundamental para poder prevenir futuros impactos, ya que el golpe contra la atmósfera de, por ejemplo, una roca de apenas diez metros puede causar una explosión equivalente a tres bombas atómicas.

Un cometa raro

La capacidad de Neowise para recoger información es magnífica. También durante su tercer año, la nave captó más de 2,6 millones de imágenes de infrarrojo del cielo. Unidas a las conseguidas en los dos primeros años de la misión, completan un solo archivo que contiene aproximadamente 7,7 millones de conjuntos de imágenes y una base de datos de más de 57.700 millones de detecciones de código extraídas de esas imágenes.

Las imágenes también contienen atisbos de objetos raros, como el cometa C/2010 L5 WISE. Una nueva técnica para conocer el comportamiento de los cometas mostró que este en particular experimentó una breve explosión a su paso por el sistema solar interior.

«Los cometas que tienen arranques bruscos no se encuentran comúnmente, pero esto puede deberse más a la naturaleza repentina de la actividad que a su rareza inherente», dice Emily Kramer, autora principal del artículo sobre el estudio de Neowise. «Es muy bueno para los astrónomos ver y recoger datos de cometas cuando sucede un estallido, pero dado que la actividad es tan efímera, simplemente les podría pasar por alto la mayor parte del tiempo».

La nueva técnica identifica el tamaño y cantidad de partículas de polvo en el entorno del cometa, y cuándo fueron expulsadas de su núcleo, revelando la historia de su actividad. De esta forma, futuros estudios de todo el cielo podrán ser capaces de encontrar y recoger datos sobre más estallidos de cometas cuando sucedan.

Originalmente llamada WISE, la nave espacial de la NASA fue lanzada en diciembre de 2009. Entró en estado de hibernación en 2011 después de completar su misión astrofísica primaria. En septiembre de 2013, se reactivó, se le renombró Neowise y se le asignó una nueva misión: identificar la población de objetos potencialmente peligrosos cercanos a la Tierra. Neowise también caracteriza las poblaciones más distantes de asteroides y cometas para proporcionar información sobre sus tamaños y composiciones. Es nuestro vigilante en el espacio.


El Mundo

El verano astronómico se iniciará en el Hemisferio Norte el día 21 de junio a las 6.24h hora peninsular (5.24h en Canarias), momento en el que el Sol se encontrará exactamente en el Trópico de Cáncer. Ese día, el más largo del año, durará en Madrid 15 horas y 3 minutos, mientras que la noche apenas llegará a las 9 horas. En el solsticio de verano, al mediodía, el Sol alcanza su máxima elevación sobre el horizonte. Esta posición tan alta no cambia apreciablemente durante varios días, y de ahí proviene el término solsticio que significa Sol quieto.

El plenilunio tendrá lugar el día 9 en la constelación de Sagitario, mientras que el novilunio será el 24 con nuestro satélite en Cáncer. La Luna se encontrará en el apogeo (punto de mayor distancia a la Tierra) el día 8, a 406.406 kilómetros de distancia, y en el perigeo (punto de mayor acercamiento a la Tierra) el día 23, a 357.931 kilómetros.

Este mes tendremos a Venus como lucero matutino y a Júpiter como lucero vespertino, ambos muy brillantes dominando el cielo al amanecer y al atardecer, respectivamente. Marte también será visible al atardecer hasta mediados de mes.

Pero el planeta protagonista del mes será Saturno, que se observará durante toda la noche, del Este al Oeste y todas las noches del mes. El gigante de los anillos pasará por la oposición el jueves 15 de Junio en la constelación de Ofiuco. Esa noche será la mejor para observarlo, pues se encontrará a su distancia mínima a la Tierra y con una iluminación solar frontal. En esa noche, Saturno recorrerá toda la bóveda celeste levantándose por el Este, justo cuando se ponga el Sol, para acostarse por el Oeste al amanecer. Esta oposición es particularmente interesante para observarlo pues los anillos se encuentran ahora con una inclinación máxima respecto de la visual, mostrándonos todos sus detalles y las divisiones entre ellos, en una configuración que tan solo sucede cada 15 años.

Pero, aunque Saturno se encuentre a su distancia mínima, aún así, se trata de una distancia enorme: unos 1.350 millones de kilómetros (la luz tarda unos 75 minutos en recorrer esta distancia). Por lo que ni siquiera en ese día es posible admirar sus anillos a simple vista, ni con unos prismáticos normales. Para ver los anillos y las grandes bandas nubosas que recorren la superficie del planeta hay que recurrir a un telescopio que tenga al menos 30 aumentos. Con un gran telescopio se pueden distinguir también las divisiones entre los anillos y las numerosas lunas (entre ellas Titán) que rodean al planeta. A simple vista, podremos observar una bella estampa el viernes 9 y el sábado 10, tras el crepúsculo, a eso de las 22h, cuando Saturno se encontrará muy próximo a la luna llena.

Finalmente, les proponemos otra cita con el cielo en la madrugada de los días 20 y 21 del mes, a eso de las 5.30h en Madrid, por el horizonte Este, cuando Venus se encontrará muy cerca del delicado filo de la luna menguante y las Pléyades serán también observables un poco más a la izquierda según miramos al cielo. El inicio del verano es un buen momento para disfrutar de las noches y contemplar el firmamento, las horas de oscuridad no son muchas, pero amables por las suaves temperaturas que invitan a disfrutar del aire libre y del cielo nocturno.

*Rafael Bachiller es astrónomo y director del Observatorio Astronómico Nacional (IGN).


El Mundo

  • Comienza a construirse en Chile el Telescopio Extremadamente Grande, el mayor instrumento para observar la luz visible
  • Se situará en Cerro Armazones, una montaña situada a 3.000 metros de altitud en el desierto chileno de Atacama
  • OPINIÓN: Icono de la ciencia y tecnología europeas

The Cerro Amazones mountain in the Chilean desert, near ESO’s Paranal Observatory, will be the site for the European Extremely Large Telescope (E-ELT), which, with its 39-metre diameter mirror, will be the world’s biggest eye on the sky. Here, an artist’s rendering shows how the telescope will look on the mountain when it is complete in 2024.

El viento sopla muy fuerte en Cerro Armazones, una montaña situada a 3.046 metros de altitud en el desierto de Atacama. Desde este mirador del norte de Chile se observa en todo su esplendor la gama cromática que tiñe las laderas de uno de los lugares más secos e inhóspitos para la vida que hay en la Tierra. Para la vista, sin embargo, es un regalo. Los tonos marrones y rosas van alternándose a medida que el sol avanza durante el día, y contrasta con el blanco de las nubes y el azul del que muchos astrónomos consideran el mejor cielo del mundo. Un enorme círculo trazado con pintura blanca en Cerro Armazones delimita la zona en la que se levantará la mayor ventana creada por el hombre para asomarse al cosmos: el Telescopio Extremadamente Grande (en inglés, Extremely Large Telescope, ELT).

Cuando entre en funcionamiento, en 2024, será el mayor telescopio del mundo que observe en el óptico (es decir, en luz visible) y en el infrarrojo gracias a su espejo principal, que medirá 39 metros de diámetro y le permitirá recoger aproximadamente 13 veces más luz que los grandes telescopios que hay en la actualidad. El Observatorio Europeo Austral (ESO, por sus siglas inglés) lo va a instalar en una gigantesca cúpula giratoria de casi 80 metros de altura y 85 metros de diámetro, cuya construcción ha comenzado oficialmente este viernes con un acto en el que simbólicamente se ha colocado la primera piedra.

La ceremonia tuvo lugar en el Observatorio Paranal de ESO, la organización internacional que está construyendo este telescopio y que ya opera otros ‘ojos’ gigantes en Chile, entre los que destacan el Very Large Telescope (VLT), en la actualidad el mayor telescopio óptico del mundo, y ALMA, en el llano de Chajnantor, cerca de la localidad de San Pedro de Atacama.

Estamos a finales del otoño austral y las temperaturas son bajas, como corresponde a esta época del año en Chile, pero las inusuales rachas de fuerte viento, que han alcanzado estos días los 80 kilómetros por hora en el Cerro Armazones, obligaron a cambiar el lugar de celebración de la ceremonia por motivos de seguridad. En lugar de hacerla en la montaña que albergará el ELT, se realizó en Cerro Paranal, a unos 2.400 metros de altitud. Aquí se encuentra el complejo donde se operan los telescopios, trabajan los astrónomos, la residencia y el campamento donde vive el personal durante sus turnos.

Un auténtica revolución

Según aseguró Tim de Zeeuw, director general de ESO, el diseño y construcción del ELT supondrá un auténtico reto tecnológico y de ingeniería que abrirá una nueva era en la astronomía y permitirá “realizar descubrimientos que hoy en día simplemente no podemos imaginar”. En su opinión, será una revolución de tal magnitud “como la que supuso el telescopio de Galileo”. Las expectativas son altas y se espera que permitirá avances en los campos con mayor interés astronómico en la actualidad. Así, tomará imágenes de planetas que orbiten otras estrellas (exoplanetas) y estudiará sus atmósferas para determinar su composición química. Por su parte, los cosmólogos podrán medir las propiedades de las primeras estrellas y galaxias que surgieron en el Universo, y estudiarán la naturaleza de la materia oscura y la energía oscura.

Las cifras que rodean esta obra faraónica son de vértigo. También su coste, estimado en 1.300 millones de euros. El ELT fue aprobado en plena crisis económica por los16 países que participan en este organismo europeo, entre los que se encuentra España, que aporta el 8% de su presupuesto. En ESO se tuvieron que apretarse el cinturón e hicieron algunos cambios en el diseño original para hacerlo más asequible, según detalla De Zeeuw: “Inicialmente el espejo principal iba a tener 42 metros, que redujimos a 39”, recuerda. Los cambios en el diseño de la estructura, asegura, les han permitido bajar el coste en unos 300 millones de euros sin que suponga una disminución en la calidad de las observaciones. Y es que, también desde el punto de vista de la ingeniería, el ELT supondrá una gran innovación, pues incorporará tecnologías que nunca antes se habían usado. Cuenta con un sistema de cinco espejos. Para poder fabricar el espejo principal, de 39 metros, se van a ensamblar 798 segmentos hexagonales.

“El ELT va a tener dos características que lo van a hacer único. La primera es el tamaño. A más espejo, más capacidad para ver el cielo más lejos porque recolectamos más luz. Aunque tengamos una estrella o una galaxia muy débil, con un espejo tan grande conseguimos focalizar suficiente luz para analizarla. Es la fuerza bruta. Cuanto más grande, mejor”, resume el astrónomo español Xavier Barcons, investigador del Instituto de Física de Cantabria y próximo director general de ESO (en septiembre relevará en el cargo a Tim de Zeeuw).

“Pero hay otro aspecto que es muy importante también y es la capacidad de utilizar la técnica de la óptica adaptativa, que consiste en corregir el efecto de las turbulencias de la atmósfera en tiempo real. Cuando recibimos la luz de una estrella, atraviesa la atmósfera. Como la atmósfera está en constante movimiento, el rayo de luz no va recto, sino que va torciéndose. En lugar de tener una imagen que sería un punto, tenemos un borrón. Con esta técnica de óptica adaptativa conseguimos corregir esto en tiempo real porque movemos un poco el telescopio, mil veces por segundo, para tener una imagen de la estrella muy nítida“, explica Barcons durante una entrevista con EL MUNDO.

El 19 de junio de 2014 se hizo una explosión controlada en parte del pico de Cerro Armazones para nivelar el suelo, que ya está listo para comenzar a construir la estructura: “Con el inicio simbólico de estas obras lo que se levanta aquí es mucho más que un telescopio. Aquí vemos uno de los mayores exponentes de las posibilidades de la ciencia y la tecnología, y de las capacidades que se pueden lograr con la cooperación internacional”, apuntó por su parte Michelle Bachelet, presidenta de Chile, el país que ha cedido a la ESO el terreno para levantar el ELT. Durante la ceremonia de la primera piedra se selló una cápsula del tiempo preparada por ESO que contiene fotografías del personal de este organismo y diversos objetos de valor histórico. La cubierta de la cápsula del tiempo consiste en un hexágono grabado fabricado con Zerodur©, el mismo material que se utiliza en muchos de los espejos gigantes del ELT.

En España no sentó bien que el ELT fuera para Chile, pues el Roque de los Muchachos, en la isla canaria de La Palma, era candidato a acoger esta fabulosa infraestructura astronómica. A la final llegaron seis localizaciones: La Palma, Cerro Armazones y otros cuatro emplazamientos de Chile. “La Palma, al ser una isla, tenía una gran ventaja, que es que tiene mucha estabilidad en las turbulencias de las capas altas de la atmósfera. Como desventaja, en Armazones observamos el 90% de las noches, mientras que en la Palma el porcentaje oscila entre el 70 y el 75% de las noches, según el año. Otra ventaja de Chile es la sequedad del ambiente. La humedad es muy baja, lo que permite que el cielo sea muy transparente a la radiación infrarroja, que también recogeremos con el ELT. Y el factor que terminó por inclinar la balanza es que vamos a operar el ELT desde el Observatorio Paranal, donde tenemos ya la infraestructura y el campamento base. Supone un ahorro muy notable en los costes de operación anuales”, enumera Xavier Barcons. Ese ahorro, detalla, sería de unos 10 millones de euros adicionales.

“Tanto Cerro Armazones como La Palma eran dos lugares excepcionalmente buenos”, asegura el también astrónomo español Fernando Comerón, representante de ESO en Chile. El científico destaca, no obstante, que “los beneficios de la construcción del ELT se van a aplicar por igual a todos los países que participan en ESO. Hay un retorno industrial y no es una enorme pérdida para España”, señala. “De los 1.300 millones que se estima que costará el ELT, se espera que entre el 6 y el 10% revierta en la industria española, de una forma directa, es decir en contratos, y también de forma indirecta, en el desarrollo de capital humano, de ingenieros especializados y en el desarrollo de capacidades competitivos para participar en otros proyectos que utilicen estas mismas tecnologías”.


ABC.es

  • Científicos sugieren la existencia de un nuevo tipo de objeto espacial llamado «synestia», una masa de roca vaporizada formada por choques colosales

Un synestia – Simon Lock y Sarah Stewart

Un equipo de científicos ha sugerido la existencia de un nuevo objeto planetario llamado «synestia», una enorme masa de roca caliente y vaporizada en forma de donut, formada por el brutal choque de otros objetos del tamaño de planetas. Según Sarah Stewart, de la Universidad de California en Davis y coautora del estudio, en un momento temprano de su historia, la Tierra probablemente también fue un synestia. El nombre deriva de «syn», «juntos», y «Estia», diosa griega de la arquitectura.

El trabajo, publicado en la revista «Journal of Geophysical Research: planets», explora cómo los planetas se pueden formar a partir de una serie de impactos gigantes. Las teorías actuales de formación planetaria sostienen que los planetas rocosos como la Tierra, Marte y Venus se formaron temprano en el sistema solar, cuando objetos más pequeños chocaron entre sí. Estas colisiones fueron tan violentas que los cuerpos resultantes se fundieron y quedaron parcialmente vaporizados. Con el tiempo se enfriaron y solidificaron convirtiéndose en los planetas casi esféricos que conocemos hoy en día.

«Nos fijamos en las estadísticas de impactos gigantes, y hemos encontrado que pueden formar una estructura completamente nueva», explica Stewart. En concreto, en un intervalo de altas temperaturas y altos momentos angulares (una magnitud física para caracterizar la rotación de un cuerpo), objetos del tamaño de planetas podrían formar una nueva estructura mucho más grande, un disco como un glóbulo rojo o un donut con el centro relleno. El objeto es principalmente roca vaporizada, sin ninguna superficie sólida o líquida.

La clave para la formación de un synestia es que algunos de los materiales de la estructura entren en órbita. En una esfera sólida, cada punto desde el núcleo hasta la superficie gira a la misma velocidad. Pero en un impacto gigante, el material del planeta puede llegar a estar fundido o gaseoso y se expande en volumen. Si se hace lo suficientemente grande y se mueve lo suficientemente rápido, partes del objeto pasan a la velocidad necesaria para mantener un satélite en órbita, y es entonces cuando se forma un enorme synestia, en forma de disco.

Cien años para la Tierra

La mayoría de los planetas sufren colisiones que podrían formar un synestia en algún momento durante su formación, según Stewart. Para un objeto parecido a la Tierra, el synestia no duraría mucho tiempo – tal vez cien años- antes de perder el calor suficiente para condensarse de nuevo en un objeto sólido. Pero el synestia formado a partir de objetos más grandes o más cálidos, como los planetas gigantes de gas o las estrellas podrían durar mucho más.

La estructura del synestia también sugiere nuevas formas de pensar acerca de la formación lunar. La Luna es notablemente similar a la Tierra en su composición, y la mayoría de las teorías actuales acerca de cómo se formó nuestro satélite natural implican un impacto gigante que arrojó material en órbita. Pero tal impacto podría haber formado una vez un synestia a partir del cual se condensaron tanto la Tierra como la Luna.

Nadie ha observado un synestia directamente, pero los investigadores creen que podría ser encontrado en otros sistemas solares una vez que se empiecen a buscar junto a los planetas rocosos y los gigantes gaseosos.


ABC.es

  • El descubrimiento es un paso importante en la búsqueda de vida en otros mundos

La ciencia acaba de dar un nuevo e importante paso en la búsqueda de vida fuera de la Tierra. Se trata de la detección de una atmósfera en un mundo muy similar al nuestro, una Super Tierra llamada GJ 1132b con apenas 1,6 veces la masa terrestre y un tamaño solo 1,4 veces mayor. De hecho, se trata del exoplaneta más parecido al nuestro en el que se ha podido detectar hasta ahora la presencia de una atmósfera. El trabajo acaba de publicarse en The Astronomical Journal.

El equipo, que incluye investigadores del Instituto Max Planck de Astronomía, utilizó para su hallazgo el telescopio de 2,2 metros ESO/MPG, en Chile, para obtener imágenes de la estrella anfitriona (GJ 1132) y medir los sutiles cambios de brillo causados por la absorción de luz tanto del planeta como de su atmósfera cada vez que pasa frente a ella.

Aunque no estamos hablando aún de una detección directa de vida en otro mundo, se trata de un importante paso en esa dirección. En efecto, la detección de una atmósfera alrededor de GJ 1132b marca todo un hito: es la primera vez que se consigue detectar una atmósfera en un planeta de masa y radio similares a los de la Tierra.

Precisamente, la estrategia que siguen actualmente los astrónomos para detectar signos de vida extraterrestre pasa por estudiar la composición química de las atmósferas planetarias, en busca de ciertos desequilibrios químicos que, para producirse, requieren de la presencia de organismos vivos. En la Tierra, la pista la da la presencia de grandes cantidades de oxígeno.

Aún estamos lejos de lograr una detección así, aunque este estudio nos coloca un poco más cerca del objetivo. Hasta ahora, en efecto, las escasas observaciones de atmósferas en exoplanetas se llevaron a cabo en mundos mucho más grandes y muy diferentes a la Tierra: gigantes gaseosos similares a Júpiter o mundos rocosos, pero muchas veces mayores que el nuestro. Por lo tanto, esta será la primera vez que se pueda analizar con detalle la atmósfera de un planeta similar en masa y tamaño al que nosotros habitamos.

GJ 1132b orbita alrededor de una enana roja en la constelación de Vela, a 39 años luz de distancia. Los científicos se fijaron en él precisamente porque, desde la perspectiva de la Tierra, pasa regularmente por delante de su estrella (cada 1,6 días), bloqueando una pequeña parte de su luz. Es decir, que lleva a cabo un tránsito cada poco más de día y medio.

A partir de la cantidad de luz bloqueada por el planeta cada vez que cruza por delante de su estrella, los investigadores pueden deducir su tamaño, que en este caso es de 1,4 veces el de la Tierra. Las observaciones, además, mostraron que el planeta parecía ser más grande en una de las longitudes de onda del infrarrojo que en las demás. Lo cual sugiere la presencia de una atmósfera opaca a esa luz infrarroja específica (lo que hace que el planeta parezca mayor), pero transparente en todas las demás longitudes de onda.

Los diferentes modelos atmosféricos llevados a cabo a partir de estos datos sugieren que la atmósfera de GJ 1132b es rica en agua y metano, lo cual encaja a la perfección con las observaciones realizadas.

A pesar de que aún no tenemos suficiente información para determinar si estamos, o no, ante un mundo con vida, sí que bastan para que los astrónomos se sientan optimistas. Las enanas rojas son la clase de estrellas más comunes y abundantes de nuestra galaxia (cerca del 75%) y si bien es cierto que suelen ser mucho más activas que el Sol, lo que significa que son capaces de “barrer” las atmósferas de sus mundos, los que consiguen conservarlas durante el tiempo suficiente se convierten en excelentes candidatos para albergar alguna forma de vida.

Los planes, ahora, son seguir muy de cerca las evoluciones de GJ 1132b con los mejores telescopios disponibles, como el Hubble y, a partir del año próximo, el James Webb, cien veces más potente y que permitirá analizar esa esperanzadora atmósfera con un detalle sin precedentes. Hasta ese momento, no queda más que mantener los dedos cruzados.


El Mundo

Recreación de un asteroide acercándose a la Tierra. NASA

Fue bautizado como 2014 JO25, tiene 650 metros de diámetro y fue descubierto por el Mount Lemmon Survey en mayo de 2014.

Se trata del asteroide de este tamaño que más se acerca al planeta Tierra en los últimos 13 años ya que se aproximará a la Tierra a una distancia aproximada de 4,6 distancias lunares el próximo 19 de abril. Cada distancia lunar corresponde a algo más de 384.000 kilómetros, la distancia entre la Tierra y su satélite, por lo que el asteroide pasará a unos 1,8 millones de kilómetros del planeta azul.

Este acercamiento es el más próximo de un asteroide, al menos de este tamaño o similar, desde el encuentro con 4179 Toutatis, que pasó a cuatro distancias lunares en septiembre de 2004, según el radar Goldstone de la NASA. El siguiente acercamiento previsto de un objeto con un diámetro mayor o igual a éste tendrá lugar cuando el asteroide 1999 AN10, de 800 metros de diámetro, se aproxime a una distancia lunar en agosto de este año.

El asteroide 2014 JO25 estará cerca del Sol hasta el próximo 19 de abril, momento en que se encontrará en una situación favorable para las observaciones y, a partir de entonces, se convertirá en uno de los principales objetivos del radar de asteroides durante este año. Debido a su cercanía al Sol, no se espera conocer su periodo de rotación antes de las observaciones del radar.

Los astrónomos calculan que este asteroide no se ha aproximado tanto a la Tierra desde hace, al menos, 400 años. Y no hay conocimiento de futuras aproximaciones tan cercanas como ésta hasta el año 2500.

A pesar de haber sido clasificado como un “Asteroide Potencialmente Peligroso” por el Minor Planet Center, no hay motivos para la alarma porque no hay riesgo de choque con la Tierra. Y es que este centro estadounidense califica bajo este nombre a todos los cometas o asteroides cercanos a la Tierra con una órbita tal que tiene potencial para acercarse a ésta y un tamaño suficiente como para causar daños significativos en caso de impacto. Además, se considera que los asteroides pertenecientes a esta lista no suponen una amenaza para la Tierra en los próximos 100 años o más. La última actualización de esta lista, en marzo de 2017, incluye a 1.786 asteroides.


ABC.es

  • Un misterioso y potentísimo «flashazo» de rayos X acaba de ser detectado por el equipo de investigadores que opera el observatorio Chandra

Localización de la enigmática fuente de rayos X – NASA/CXC/F. Bauer et al

El Universo está lleno de señales que los científicos, sencillamente, no alcanzan a comprender. Señales tan energéticas y potentes que pueden ser captadas desde la Tierra incluso a distancias de miles de millones de años luz, pero cuyo origen, naturaleza y localización exacta se desconocen. Pueden llegar en las más diversas longitudes de onda, desde los rayos gamma a los rayos X o incluso en las frecuencias de radio, pero con una intensidad tal que resulta imposible atribuirlas a fenómenos naturales conocidos.

Astrónomos del mundo entero intentan captar estos repentinos estallidos que a menudo liberan, en menos de un segundo, más energía que el Sol en varios millones de años. Para ello se han construido poderosos telescopios que peinan el cielo cada uno en una longitud de onda concreta. Los brotes de rayos gamma, por ejemplo (GRBs por sus siglas en ingles), son los eventos más luminosos de todo el Universo y se cree, aunque no se sabe con certeza, que podrían estar producidos por la explosión de supernovas muy lejanas, o deberse quizá a fenómenos extremadamente violentos que aún no hemos sido capaces de identificar. Lo que sí sabemos es que es tal el brillo que producen que, por un instante, eclipsan a los miles de millones de estrellas que forman la galaxia a la que pertenecen.

Hace pocos días (otro ejemplo diferente) astrónomos del Instituto Harvard-Smithsonian se declaraban incapaces de explicar otro tipo de señal, esta vez un destello rápido de radio (FRB o Fast Radio Burst), de apenas unos nanosegundos de duración pero con una intensidad tal que los investigadores llegaron a preguntarse si no estaríamos ante el alarde tecnológico de una civilización extragaláctica muy avanzada. El primer FRB se descubrió en 2007, y hasta ahora solo se han detectado 18, sin que nadie haya logrado ofrecer una explicación lógica o coherente que justifique su existencia.

Y ahora le ha tocado el turno a los rayos X. Un misterioso, y también potentísimo «flashazo» de rayos X, en efecto, acaba de ser detectado por el equipo de investigadores que opera el Observatorio de rayos X Chandra, de la NASA. Y lo han localizado mientras estudiaban la que es, hasta ahora, la imagen más profunda del Universo obtenida en esa longitud de onda. En un artículo que se publicará en junio en Monthly Notices of the Royal Astronomical Society, los científicos sostienen que es posible que la fuente de esta emisión sea algún tipo de evento sumamente destructivo, aunque de un tipo que nunca se había visto antes.

Una «fuente en llamas»

Esta misteriosa emisión de rayos X fue descubierta en octubre de 2014, y desde entonces el equipo de científicos trata de buscarle, sin éxito, una explicación. «Esta fuente en llamas -afirma Niel Brandt, uno de los autores del estudio- fue una maravillosa sorpresa que descubrimos de forma accidental durante un trabajo en el que tratábamos de explorar el Universo en el mal comprendido ámbito de los rayos X. Definitivamente, tuvimos suerte con este hallazgo, y ahora disponemos de un nuevo fenómeno transitorio que tendremos que tratar de explicar durante los próximos años».

Localizada en una región del cielo conocida como »Campo profundo Sur de Chandra» (Chandra Deep Field-South, o CDF-S), la fuente de rayos X tiene toda una serie de propiedades únicas. Por ejemplo, antes de octubre de 2014 no había ni rastro de ella en esa región de cielo estudiada por Chandra, pero de pronto apareció y en apenas unas horas multiplicó su brillo más de mil veces. La emisión duró todo un día, para ir debilitándose después hasta caer por debajo de la sensibilidad de los instrumentos del Chandra y desaparecer por completo.

Fueron necesarias miles de horas de trabajo de los telescopios espaciales Hubble y Spitzer para determinar que el suceso provenía de una débil y pequeña galaxia situada a unos 10.700 millones de años luz de la Tierra. Durante unos minutos, la fuente de rayos X produjo mil veces más energía que todas las estrellas de esa lejana galaxia.

«Desde que descubrimos esa fuente -explica por su parte Franz Bauer, otro de los firmantes del artículo- hemos estado luchando por entender su origen. Es como si tuviéramos delante un rompecabezas, pero sin disponer de todas las piezas».

¿Qué es lo que han visto?

Durante los más de dos meses y medio que el Observatorio espacial Chandra estuvo observando la región CDF-S, la misteriosa fuente de rayos X no volvió a aparecer. Y tampoco se han encontrado señales similares en otras partes del cielo, que Chandra lleva observando desde hace ya 17 años. Y si bien es cierto que se han observado fuentes de rayos X en otras ocasiones, ninguna de ellas se aproxima siquiera a las características y propiedades de esta señal en concreto.

Para Kevin Schawinski, otro de los autores del artículo, »es posible que hayamos sido testigos de un tipo completamente nuevo de evento cataclísmico. Pero sea lo que sea, necesitaremos llevar a cabo muchas más observaciones para poder comprender qué es exactamente lo que hemos visto».

A %d blogueros les gusta esto: