La Historia de la Astronáutica y la Carrera Espacial


Se llama astronáutica a la navegación realizada entre los astros, es decir, realizada fuera del ámbito de la Tierra. También es conocida como cosmonáutica, ya que también se realiza en el cosmos. El término astronáutica ha sido más utilizada en occidente, de ahí que los tripulantes de naves espaciales occidentales sean conocidos como astronautas, mientras que en la antigua URSS eran conocidos como cosmonautas, o navegantes del cosmos. Evidentemente esta disciplina no sólo incluye el estudio de los vuelos espaciales, sino que incluye también la investigación, construcción de los vehículos necesarios, así como una serie de tecnologías anexas.

A la hora de plantearse la posibilidad de salir de la atmósfera terrestre, tanto para orbitar alrededor de la Tierra como para navegar en el cosmos, se ha de tener siempre presente la fuerza de la gravedad. La gravedad es la fuerza que mantiene la cohesión del universo y la que rige su mecánica. Los vehículos o artefactos que vuelan por el espacio no son ajenos a esta fuerza.

Escapar a la gravedad terrestre

Como recordaremos, la ley de la gravitación universal, enunciada por Isaac Newton, dice que cualquier partícula de materia atrae a cada una de las demás con una fuerza directamente proporcional al producto de sus masas respectivas e inversamente al cuadrado de la distancia que las separa. Como los astros están en movimiento constante, la fuerza centrífuga provocada por ese movimiento contrarresta en parte la atracción gravitacional, creándose una complejísima maraña de interacciones entre unos cuerpos y otros.

Los cuerpos más grandes atraen con mayor fuerza a los pequeños. Esta atracción será más intensa si la distancia es poca. Así encontramos que ciertos cuerpos son capaces de atraer a otros obligándoles a orbitar a su alrededor. Si estos cuerpos atrapados por la gravedad de uno mayor estuvieran quietos serían arrastrados hasta chocar.

La gravedad que nos interesa en este caso, la de la Tierra, es muy poderosa. Nos mantiene sobre su superficie y da forma a todo nuestro mundo. A nivel intuitivo sabemos que todo cuerpo dejado en libertad en el aire caerá en dirección al centro de gravedad de la Tierra con una aceleración, es decir, su movimiento será cada vez más rápido según pasa el tiempo.

A la aceleración que sufren los cuerpos por efecto de la gravedad terrestre es conocida como g, y su valor oficial es de 9,81metros por segundo. Es fácil imaginar que este valor varía en cada cuerpo celeste. Así en la Luna, un cuerpo de una masa mucho menor que la de la Tierra, la aceleración de la gravedad es mucho menor a la terrestre, ya que su masa también lo es.

Un dato a tener en cuenta sobre el valor de g, 9,81 m/s., es que se trata de un valor en un punto concreto, a nivel del mar. Según dice la ley de la gravitación universal, si nos acercamos al centro de gravedad, ese valor aumentará. Si nos alejamos de ese punto, la aceleración de la gravedad tenderá a disminuir.

Una vez que sabemos como interactúa la gravedad de la Tierra con los cuerpos que hay en su superficie, tenemos un problema si queremos salir de la Tierra, bien hacia otros planetas, o bien para colocar un cuerpo en una órbita para que se comporte como un satélite. Hemos de vencer la fuerza de la gravedad que tenderá a que ese objeto caiga hacia el centro de gravedad. La experiencia nos dice que cuando lanzamos algo, este objeto seguirá subiendo hasta que su velocidad se anule y caiga.

¿Cómo hacer que un objeto nunca caiga hacia el centro de gravedad de la Tierra? Muy sencillo, haciendo que esté cayendo constantemente hacia ese punto y la forma de realizarlo es imprimiéndole una velocidad inicial horizontal adecuada. Esta velocidad es de aproximadamente de unos 8 km por segundo, es decir, unos 28.800 km/h. Aunque ese objeto se desplace a esa velocidad también tenderá a caer hacia el centro de gravedad de la Tierra.

Si la Tierra fuera plana, el objeto, pasado un tiempo, llegaría a la superficie. Pero la Tierra es una esfera y por cada 8 km que se recorren en un segundo, en sentido horizontal, ese cuerpo ha caído en ese mismo tiempo la cota del arco de 8 km. Esto significa que la caída de ese objeto coincide con la curvatura de la Tierra, por lo que la trayectoria es paralela a la superficie terrestre. Hemos logrado que ese objeto entre en órbita. A menor velocidad el cuerpo terminaría cayendo a tierra. Pero para que esta órbita sirva para algo debe de ser continua, ya que dentro de la atmósfera ese impulso inicial se iría perdiendo con el paso del tiempo por el rozamiento del aire.

Sin embargo, a una distancia de unos 200 km de la superficie terrestre, la atmósfera es inexistente. Además, no debemos olvidar que cuanto mayor sea la distancia del objeto al centro de gravedad, menor será la atracción gravitacional. Así, a partir de estas alturas, no encontramos nada que frene el avance del cuerpo y además la velocidad horizontal que se ha de lograr para equilibrar la fuerza de gravitación es menor. Como ejemplo baste decir que a 1.666 km sobre la superficie terrestre, la velocidad circular que contrarreste la fuerza de la gravedad es de 7,02 km por segundo.

Cuando hablábamos de la Tierra, la describíamos como un esfera para simplificar, ya que en realidad tiene una distribución irregular de las masas, además de estar achatada en ambos polos. Esto supone que las órbitas no sean circulares sino elípticas o excéntricas. En las órbitas elípticas de los satélites la Tierra ocupa un foco de dicha elipse.

Puede ocurrir que nuestra intención sea que un aparato viaje hacia otros lugares más lejanos. En ese caso también hay una velocidad de escape de la influencia gravitacional de la Tierra. Esa velocidad está establecida en 11,2 km segundo, o lo que es lo mismo 40.000 km/h. A partir de esa velocidad ese objeto no describe una elipse sino una parábola. Aún consideramos otra velocidad de escape y es la necesaria para escapar a la influencia gravitacional del Sol, establecida en 16,7 km por segundo.

CohetesAntes de establecer la órbita hemos tenido que elevar ese objeto hasta el punto de eyección, o lugar en donde inicia su órbita. Debemos conseguir que un cohete, sirva de portador al objeto que pretendemos poner en órbita y sea capaz de alcanzar la velocidad necesaria.

Realmente un cohete no es más que un gran contenedor del propergol, es decir, combustible y oxidante, listo para realizar la reacción química en el motor que produzca el empuje. Es cierto que además hay un gran número de sistemas que controlan su funcionamiento. No debemos olvidar que hay que acoplarle en la parte superior el satélite que se ha de poner en órbita. En un lanzamiento normal, o sea vertical, el motor debe ser capaz de elevar toda su masa, el empuje del motor debe superar la masa del cohete.

Otro problema al que se enfrentan los técnicos es el de lograr que el cohete alcance la velocidad necesaria para lograr poner en órbita un satélite, (aproximadamente 8 km por segundo). En este caso es muy importante relacionar la masa estructural del cohete y el peso total con el propergol. Cuanto menos pese la estructura y mayor carga de propergol pueda transportar, mayores posibilidades de alcanzar la velocidad adecuada. Pero la tecnología actual no permite que un cohete alcance la velocidad necesaria.

Este es un grave problema que sin embargo tiene una sencilla solución. Se recurre a los cohetes de fases, es decir, un cohete que en realidad se comporta como varios. Esto es así por que la velocidad de cada una de las etapas se suma. Se recurre a un cohete de 3 etapas, en la que cada etapa es capaz, por ejemplo, de imprimir al conjunto una velocidad de 3 km por segundo, lo que significa una velocidad final de 9 km por segundo. Además, cada etapa ha de imprimir esa velocidad a una masa cada vez menor. En primer lugar porque el propergol se va consumiendo en cada fase del vuelo. Además, cuando las etapas dejan de funcionar se desprenden del conjunto, con lo que la masa del cohete va descendiendo mientras aumenta la velocidad.

Para que este principio se cumpla, la masa de cada etapa sucesiva debe ser proporcionalmente mucho menor que la anterior. Aún así la relación entre la carga que se pondrá en órbita y el peso del cohete que ha de llevarla, incluyendo el propergol, es bajísima, aunque cada vez se hace más favorable con la mejora en la propulsión y en la utilización de materiales más ligeros.

Una vez que ya tenemos el cohete capaz de alcanzar las velocidades necesarias a lo largo de su vuelo, nos encontramos con que ese vuelo ha de ser controlado con gran exactitud. Los satélites están pensados para trabajos muy concretos que necesitan a la vez de órbitas precisas. A su vez, como ya comentamos, la forma de la órbita tiene mucho que ver con la velocidad del satélite y la forma en que es eyectado en su órbita correspondiente. Ya que el cohete, en sus primeras fases, vuela dentro de la atmósfera, el control efectivo de su actitud se realiza recurriendo a superficies de control similares a las que utiliza un avión, en este caso a aletas, normalmente en la base de la estructura. Pronto la densidad de la atmósfera es tan poca que las aletas no ejercen control efectivo, por lo que se recurre a pequeños motores cohete instalados en puntos estratégicos. Este es el mismo sistema que se utiliza en el resto de ingenios espaciales para su control. Ya tenemos listo el cohete. Su carga, montada en el extremo superior, va resguardada por una caperuza cónica conocida como ojiva.

Aunque la lógica nos dice que la trayectoria rápida para alcanzar una órbita es inclinando el cohete en esa dirección, el vuelo inicial es casi vertical. La razón es muy sencilla. El cohete alcanzará grandes velocidades aún en su primera fase de vuelo dentro de la atmósfera más densa. A las velocidades a las que se trabaja, el rozamiento de la atmósfera tenderá a frenar el movimiento además de calentar fuertemente el recubrimiento de la estructura. Cuanto menos tiempo permanezca el cohete en la atmósfera mucho mejor. La forma de hacerlo es mediante una trayectoria lo más vertical posible, que es la que suele coincidir con el funcionamiento de la primera fase.

Una vez que se ha alcanzado una altura suficiente y la densidad del aire es baja, comienza a funcionar la segunda fase del cohete que ya toma una inclinación vertical en busca de la órbita. La tercera fase será la que confiera al satélite la velocidad necesaria para entrar en órbita a la altura necesaria. Todas las funciones del cohete, así como sus evoluciones, son controladas desde tierra gracias a equipos de radio.

Historia de la astronáutica

Para hablar de la astronáutica, que ha dado todos sus frutos a lo largo de este siglo, hemos de retroceder hasta el siglo X, al menos, para encontrar la primeras aplicaciones del principio de reacción para impulsar un cuerpo, con los primeros cohetes de pólvora chinos. Ya en el siglo XIII estos cohetes se utilizaron como armas contra los mongoles. Con esta finalidad serán utilizados hasta que la artillería los desbanque en el siglo XIX.

Curiosamente antes de que el cohete se desarrollara como un instrumento útil, podemos encontrar a un gran número de visionarios que ya piensan en la exploración espacial y que investigan sobre los problemas de la propulsión. Uno de los primeros es el ruso Kibalchich. Pensaba utilizar para la propulsión la pólvora dentro de una cámara de combustión. Era un gran especialista en la utilización de dicho elemento aunque parece ser que para la construcción de bombas, motivo por el que fue ejecutado en 1881. Otro de los pioneros, que expuso sus teorías a finales del siglo XIX, fue el alemán Ganswindt. Sin embargo, el que todos los estudiosos consideran como el padre de la astronáutica es el ruso Konstantin Eduardovich Tsiolkovski. Su obra, Exploración del universo mediante vehículos propulsados por cohetes, sienta las bases de la astronáutica.

En 1921, Tijomirov crea en la URSS el Laboratorio de Dinámica de Gases, que tan buenos resultados obtendría en la aplicación de los cohetes a la artillería de saturación durante la II Guerra Mundial. Se trataba de los cohetes Katiuska, cuyos lanzadores eran conocidos como los Órganos de Stalin.

El americano, Robert Hutchins Goddar, inició en 1926 sus trabajos en cohetes en su afán de alcanzar cada vez mayor empuje y altura. Fue el primer investigador que trabajo con propergol líquido con el que obtuvo grandes éxitos. Uno de sus ingenios superó en 1935 la velocidad del sonido. Pero desgraciadamente sus experiencias no sirvieron de mucho ya que su trabajo fue ignorado y será otro país, Alemania, el que tomará la delantera en este campo.

Los alemanes crearon en 1930 un campo de experimentación cerca de Berlín que sirvió de embrión para el desarrollo de un vasto programa sobre cohetes de uso militar. Tenían como base los trabajos teóricos de otro precursor, el alemán Julius Obert. En 1936 se centralizan todas estas experiencias en una isla del mar Báltico, en un lugar conocido como Peenemünde, controlada por el ejército alemán.

Entre los técnicos que trabajarán en esta base se encuentran Maximilian Valier, Walter Neubert y el famoso Wernher von Braun, que más tarde será el padre de los más importantes cohetes americanos. Sus trabajos darán lugar a los primeros cohetes realmente útiles de la historia, eso sí, de uso militar. Tras años de experimentos, en 1942 vuela el primer A 4. Se trata de un cohete de propergol líquido, concretamente alcohol y oxígeno líquido, que logra alcanzar alturas de 200 km y velocidades superiores a los 5.000 km/h. Este será el primer cohete que salga de la atmósfera terrestre. Con 14 m. de altura y más de 12 t. de peso se trata pues de un sistema ya muy evolucionado, capaz de transportar explosivos, a más de 300 km. El cohete conocido militarmente como V 2, será el origen de los desarrollos posteriores en la técnica de los cohetes.

Esos técnicos que habían logrado el primer cohete moderno de la historia, serán uno de los botines más apetecidos tras la derrota de Alemania en 1945. Tanto las potencias occidentales como la URSS emprendieron una auténtica carrera para hacerse con el mayor número de V 2, así como de los ingenieros que las hicieron posibles. Ellos serán la base del desarrollo de los cohetes en ambos bloques. En 1947 los soviéticos ya realizan desarrollos de las V 2 con mayores capacidades. También los norteamericanos empiezan sus trabajos sobre esos mismos cohetes. En los EEUU es donde volará el primer cohete de dos etapas en 1949. Se trata del cohete Bumper. La primera fase es una V 2, mientras que la segunda es un desarrollo americano llamado WAC Corporal. Con este cohete se logra una altura de 392 km. Todavía los esfuerzos técnicos están más centrados en las posibilidades como armamento de estos ingenios que como plataforma para llegar al espacio.

La carrera espacial

Será la URSS la que dé muestras de mayor agilidad en este campo, con la puesta en funcionamiento del primer cohete intercontinental: el SS 6, que convenientemente remozado será el cohete utilizado en los primeros vuelos espaciales. Aunque los EEUU habían anunciado que pondrían en órbita su primer satélite artificial en 1957-1958, para conmemorar el Año Geofísico Internacional, fueron los soviéticos los que dieron la sorpresa el día 4 de octubre de 1957, colocando en órbita el primer objeto artificial de la historia: el Sputnik 1. Lo sorprendente de la hazaña es que este satélite, que tan sólo portaba un emisor encerrado en una carcasa esférica, tenía un peso realmente elevado, 86,3 kg. El cohete portador era un Vostock y el satélite describía una órbita completa a la Tierra en 96 minutos.

El pánico se desató en los EEUU y la Guerra Fría encontró otro nuevo escenario para el combate, el espacio. Los americanos se apresuraron a responder al desafío, pero todos los intentos acabaron en fracaso. Mientras, la URSS no deja de sorprender al mundo lanzando el 3 de noviembre del mismo año el Sputnik 2. Para la época se trataba de un satélite inmenso ya que medía 4 m y pesaba 508 kg. Pero lo más sorprendente es que a bordo llevaba una perra, Laika, que se mantuvo viva y en perfectas condiciones durante 7 días. Era la demostración de que los vuelos tripulados eran posibles.

No será hasta enero de 1958 cuando los EEUU logran poner en órbita su primer satélite: el Explorer 1. Aunque varias misiones posteriores son un fracaso, también logran poner en órbita el Vanguar 1, primer satélite que utiliza células solares para producir energía eléctrica. Otro éxito es la colocación en órbita del primer satélite de comunicaciones SCORE. Finalmente, en octubre de ese año se crea la Agencia Espacial de los Estados Unidos, NASA, que a partir de este momento centralizará todo el esfuerzo en el campo de la astronáutica. Ese año los soviéticos dan un paso más y lanzan a dos perras que después son recuperadas con total normalidad.

En el año 1959 los soviéticos logran lo que antes intentaron en varias ocasiones, alcanzar la Luna gracias a la sonda Lunik 2 que invierte 34 horas en alcanzar nuestro satélite. Será la Lunik 3 la que logre llegar a la Luna y volver a una órbita terrestre tras transmitir las primeras imágenes de la cara oculta del satélite.

La década de los 60 será sin duda la más intensa en la carrera, aunque no hay que olvidar que también es la que marca el inicio de los satélites artificiales como plataformas usuales de investigación, pero también para otros usos. Así, a principios de esta década encontramos los primeros satélites meteorológicos como el TIROS 1, de comunicaciones como el Echo 1, el más avanzado Courier 1B, y el de defensa como el Midas 3.


Vuelos espaciales tripulados

Para responder al reto de colocar un hombre en órbita, los EEUU preparan el proyecto Mercurio. En una cápsula de este tipo, en enero de 1961, vuela el chimpancé Ham, que vuelve a la tierra en perfectas condiciones. Pero de nuevo los soviéticos dan la sorpresa. El cosmonauta Yuri A. Gagarin es el primer hombre que llega al espacio, el día 12 de abril de 1961. Es, a su vez, el primero que entra en órbita, describiendo una revolución completa al planeta antes de descender en su cápsula Vostok. Parece ser que este vuelo sufrió graves problemas que hicieron peligrar la vida de Gagarin.

Los EEUU no pudieron enviar su primer hombre al espacio hasta el 5 de mayo, aunque la trayectoria de la cápsula Mercurio era de tipo balística, es decir, no entra en órbita. Los americanos realizan tres misiones de este tipo hasta que en 1962, John Glenn logra las primeras tres órbitas. De todos modos el reto era muy distinto ya que en el verano anterior el cosmonauta Titov había logrado pasar un día completo en órbita.

Los soviéticos ganaban claramente la carrera. Ese era el momento de lanzar una apuesta más arriesgada y eso fue lo que hizo el presidente estadounidense John F. Kennedy, apostar por alcanzar la Luna antes de que terminara la década. Será la década de oro para la NASA, con presupuestos casi ilimitados. Era el momento de contrarrestar el avance comunista hasta en el espacio y el ciudadano de a pie seguía ansioso cada progreso en la carrera del espacio. En 1963 los soviéticos dan otra vez la campanada con el primer vuelo de una mujer, Valentina V. Terechkova.

Es importante hacer notar que los EEUU, aunque avanzan de forma más lenta en el campo de los vuelos tripulados, logran grandes éxitos en el campo de los satélites. Los de comunicaciones se muestran fiables y capaces de permitir buenas comunicaciones entre continentes como el Syncom I y II y el Telstar. Una de las grandes aportaciones soviéticas durante 1963 es la puesta en órbita del satélite Polet que es capaz de cambiar de órbita de forma controlada.

En cuanto a los nuevos cohetes, los EEUU logran lanzar el Saturno I en 1964, el cohete más potente de la época y que será determinante en el proyecto de llegar a la Luna. También en este año se produce el primer vuelo en el que la cápsula acoge a más de un tripulante, concretamente son tres cosmonautas.

En cuanto a la investigación de otros planetas, se inicia con algunos intentos de alcanzar Venus y Marte. La sonda americana Mariner llega cerca de Venus en 1962 aportando diversa información, mientras que la Mariner 4 alcanza en 1965 Marte, enviando imágenes de este planeta.

El evento más importante ocurrido durante 1965 es, sin duda, el primer paseo espacial de la historia. Ocurrió el 18 de marzo de ese año, cuando el cosmonauta soviético Alexei A. Leonov salió de la cápsula Vosjod 2, permaneciendo fuera de la nave durante 10 minutos. Leonov, equipado con un traje espacial, estuvo en todo momento sujeto a la cápsula con un cable. Apenas tres meses después, el astronauta Edward White logra ser el primer americano en salir de una cápsula en plena órbita. También fue el año del primer lanzamiento de un cohete espacial francés.

El año 1966 está marcado por los preparativos para la llegada del hombre a la Luna. Los primeros son los soviéticos que logran posar de forma suave sobre su superficie una sonda. Se trata de la Luna 9. Este aparato capaz de enviar fotografías, será seguido por la Luna 13 que es capaz de tomar muestras del suelo y analizarlas. También los EEUU consiguen enviar una sonda a nuestro satélite, concretamente la Surveyor, que permanecerá activa durante varios meses. En el marco de esa preparación, dos astronautas, Neil Armstrong y David Scott, logran que la cápsula Géminis 8 se acople a un cohete Agena en pleno vuelo.

Camino de la Luna

La NASA había logrado los objetivos fijados dentro del programa Géminis, por lo que en 1967 pasa al siguiente programa, el Apolo, con el objetivo puesto en la Luna. Dicho programa no puede empezar peor. En enero de ese año mueren tres astronautas durante un ensayo en el Apolo I, lo que supuso el más grave de los accidentes en este campo hasta la fecha. Tampoco el programa soviético se libraba de estos accidentes y en abril murió un cosmonauta a bordo de la nave Soyuz I. Ese mismo año la sonda soviética Venusik 4 alcanza el planeta Venus, enviando importantes datos del poco conocido planeta.

La siguiente prueba para el programa Apolo es el de la permanencia de los tripulantes en el espacio. El Apolo VII logra en octubre de 1968 permanecer 11 días en el espacio con tres tripulantes a bordo. El camino hacia la Luna estaba despejado.

El año 1969 se inicia con un ensamblaje de dos naves tripuladas. Fue realizado por las soviéticas Soyuz V y la Soyuz VI. Mientras los soviéticos parecían haber perdido el interés por la Luna, los EE.UU. seguían sus progresos dentro del programa Apolo. La misión Apolo IX incluye la separación del módulo de descenso lunar LEM, tripulado por dos astronautas, para volver a unirse a la cápsula más tarde orbitando sobre la Luna. La siguiente misión llevó el LEM muy cerca de la superficie del satélite.

El Apolo XI siguió el mismo programa que las dos misiones anteriores. Una vez que los astronautas entraron en la órbita del satélite, el módulo lunar Eagle se separó del módulo de mando en el que permaneció el astronauta Michael Collins. El Eagle llevaba a bordo a Edwin Aldrin y Neil Armstrong, que será el que pise por primera vez la superficie lunar el día 20 de julio de ese año.

Durante algo más de dos horas permanecen fuera del módulo haciendo diversas pruebas y recogiendo muestras. Terminada la misión, el módulo lunar abandona la superficie para unirse al módulo de mando e iniciar la vuelta a la Tierra. En total la misión duró algo más de 8 días. Por fin los estadounidenses pueden presumir de haber batido ampliamente a los soviéticos. Antes de que acabe el año, el Apolo XII llega de nuevo a la superficie del satélite.

El mes de abril de 1970 se produce el intento fallido de llegada a la Luna del Apolo XIII, que tras un accidente puede volver a la Tierra, con su tripulación a salvo. Ese mismo año la República China pone en órbita su primer satélite artificial, entrando de esta forma en el club de las potencias espaciales.

A finales de este año la URSS lanza el Lunik 17, que alcanza la Luna. A bordo de este ingenio se encuentra un vehículo, el Lunajod, que es capaz de rodar por la superficie del satélite. Al año siguiente ponen en órbita la primera estación espacial de la historia, la nave Salyut. Esta estación puede ser visitada por los cosmonautas en naves Soyuz. La primera tripulación permanece 24 días en su interior, aunque en el regreso se produce un accidente, en el que pierden la vida los tres cosmonautas.

Durante 1971 llega a la Luna el Apolo XV que permaneció 4 días en la Luna, llevando a bordo un vehículo para desplazarse por la superficie. Los EE.UU. comienzan en 1972 sus misiones con sondas de larga duración, con el lanzamiento del Pioneer X en dirección a Júpiter. Ese mismo año se realiza la que será última misión tripulada a la Luna hasta el momento, la Apolo XVII. En estos momentos los programas espaciales no logran despertar el entusiasmo popular de la década pasada y se empieza a cuestionar su rentabilidad. A partir de este momento se reorientará el programa espacial americano. Los soviéticos seguirán con su programa Salyut no exento de problemas.

De fracaso se puede considerar el primer y ambicioso laboratorio espacial americano, el Skylab. Puesto en órbita en 1973, es ocupado por varias tripulaciones a pesar de sus problemas técnicos, que lo dejarán inservible hasta el momento de su descenso y desintegración en 1979.

En 1975 se asiste a la primera misión conjunta realizada por los EE.UU. y la URSS. Consistía en la unión de una nave Apolo y otra Soyuz. Durante dos días las tripulaciones de ambas naves realizaron diversos experimentos.

Ese mismo año nace lal que terminará siendo el gran competidor de soviéticos y americanos en el espacio es la Agencia Espacial Europea o ESA, como resultado de la fusión de otros organismos europeos. Su base de lanzamiento se establece en Kourou, en la Guayana Francesa. Su programa de lanzadores será conocido como Ariane, el primero de los cuales hace su vuelo a finales de 1979.

El uso del satélite artificial ha alcanzado en este punto una gran difusión, baste saber que hasta 1980, el número de estos aparatos puestos en órbita era de 2.170. Concretamente el mayor número de estos ingenios lo constituyen los de comunicaciones. Además hemos de destacar el gran avance que suponen los satélites para la meteorología. Una de las series de satélites meteorológicos más famosa se inicia con el lanzamiento del Meteosat 1 en 1977. También ese año los EEUU lanzan dos sondas: la Voyager 1 y 2. Estas sondas han aportado interesantes datos sobre los planetas exteriores del sistema solar.

El transbordador espacial americano Columbia vuela en 1981. Se trata de una nave orbital reutilizable, con forma de avión. En el momento del lanzamiento se le acopla un gran depósito de combustible líquido, además de dos cohetes laterales de combustible sólido. El empuje a la hora del despegue es proporcionado por los motores principales, alimentados por el depósito externo y los dos aceleradores laterales. A unos 40 km de altura se desprenden los cohetes auxiliares, que pueden ser utilizados varias veces. A mayor altura el tanque principal se desprende y queda sólo el orbitador. Tiene en su interior una gran bodega en la que se pueden transportar tanto laboratorios, como sondas o satélites.

Gracias a un brazo articulado estos ingenios pueden ser sacados de la bodega o incluso atrapar objetos para ser trasladados a tierra. Será la tripulación del transbordador Discovery en 1984 la primera que atrape un satélite en órbita para introducirlo en la bodega. Terminada la misión el orbitador vuelve a la Tierra planeando para perder altura y velocidad antes de aterrizar como un avión normal. Pronto se comprobó que para colocar satélites en órbita era mucho más caro que los lanzadores convencionales. En 1984 se produce la primera misión en la que un astronauta americano se aleje del transbordador sin estar unido físicamente a éste. Utiliza una mochila especial con un gran número de pequeños cohetes.

En la década de los 80 la cooperación entre Europa y los EEUU se hace más estrecha, así ESA y NASA participan conjuntamente en varios programas. En 1983 el transbordador espacial lleva a bordo un laboratorio reutilizable, llamada Spacelab construido por la ESA y que viajará en varias ocasiones al espacio.

Los soviéticos, por su parte, se están especializando en prolongadas permanencias en el espacio. En este sentido, logran en 1986 uno de sus mayores éxitos al colocar en órbita la estación Mir. Se trata de un conjunto de módulos de tipo científico, en el que los cosmonautas pueden permanecer durante largos períodos de tiempo. Se ha sobrepasado el año, realizando investigaciones de todo tipo. La operatividad de esta estación es muy alta ya que para su mantenimiento se ha ideado un sistema de naves no tripuladas muy sencillas, capaces de atracar automáticamente.

Precisamente en el año 86 se registra la mayor catástrofe de la carrera espacial al morir los 7 ocupantes del transbordador americano Challenger, a los pocos segundos de su despegue.
Al año siguiente, 1987, nace otra potencia espacial: Japón, con el lanzamiento del cohete H1 portando un satélite de comunicaciones.

Los soviéticos deciden apostar por un vehículo reutilizable como el transbordador americano y crean el Buran. Hace un vuelo automático en 1988 con total éxito, aunque esta será su primera y única misión. Sin embargo, de este proyecto sale el que es en la actualidad el cohete más potente, el Energía, capaz de elevar hasta su órbita baja una carga de 100 t.

En Europa, sigue el éxito comercial de los lanzadores Ariane. En 1988 se presenta la serie 4 de este lanzador, que será el cohete con el que Europa competirá con los lanzadores americanos por el creciente mercado de lanzamiento de satélites.

La siguiente década comienza con uno de los proyectos científicos más espectaculares: la puesta en órbita de un gran telescopio, el Hubble. Se trata de un satélite con el que se pueden realizar observaciones astronómicas imposibles de conseguir desde la Tierra. Este instrumento, de más de 12 t. de peso fue puesto en órbita en 1990 por el transbordador espacial. Pero lo más espectacular es que en 1994 fue reparado en órbita por los astronautas de otro transbordador, en una operación muy compleja que se saldó con un rotundo éxito. Esta operación fue también un ensayo para la construcción de la proyectada estación espacial americana.

Desde la década de los 80 el programa espacial soviético se iba ralentizando ante los problemas económicos crecientes. El grueso del programa se centraba en la estación Mir, aunque sin olvidar la exploración, como la realizada por las sondas Venera.

El colapso llegó con la desintegración de la URSS. A partir de este momento la situación se hace crítica. Los lanzamientos se ralentizan y el antiguo programa soviético queda dividido entre las distintas repúblicas que formaban la antigua URSS, aunque el peso de las operaciones lo llevará Rusia. Desde ese momento la situación se ha normalizado, dando lugar a un alto nivel de cooperación entre las potencias espaciales. Así cosmonautas rusos, europeos y americanos han podido participar en programas de cada una de las agencias. Los rusos necesitan financiación, mientras que los EEUU necesitan la gran experiencia en vuelos de larga duración y en estaciones orbitales que han acumulado los rusos. Así, el transbordador americano ya ha atracado en la base Mir, lo que es sólo el preludio de una cooperación más estrecha en la construcción de la estación espacial Alpha.

El proyecto Alpha ha sido uno de los más polémicos de los últimos años, ya que a él se han enfrentado los políticos americanos alegando sus costes. Se rebajaron sus características y se dio paso a la colaboración de rusos, canadienses, japoneses y europeos. Se espera que los primeros módulos sean lanzados en 1997, a la espera de completar todo el conjunto en los primeros años del próximo siglo.

En cuanto a los programas no tripulados hemos de destacar el programa conjunto americano-europeo Ulysses para la exploración de los polos del Sol y el programa ISO, un proyecto europeo de satélite con un telescopio de infrarrojos.

En cuanto al futuro cabe señalar que todos los expertos hablan sobre una misión tripulada a Marte, sobre todo ahora que la cooperación entre las distintas agencias nacionales hace más asumible el coste económico y tecnológico. Durante los últimos años se ha seguido con el envío de sondas a Marte como parte de una futura misión. De todos modos aún no hay ningún proyecto concreto.

El número 23.5, la cifra que explica por qué hay estaciones


ABC.es

  • Esa es la inclinación del eje de la Tierra y la causa de que los dos hemisferios del planeta solo reciban la misma cantidad de energía del Sol dos días al año, durante los equinoccios

Si el eje de la Tierra no estuviera inclinado no habría estaciones. Esto ocurre por ejemplo en el planeta Mercurio – NASA

¿Por qué hay estaciones? Muchas personas dirán que su causa está relacionada con la distancia que hay entre la Tierra y el Sol: cuando el planeta está más cerca de la estrella, el globo está más caliente. Cuando está más lejos, más frío. Pero, ¿eso explicaría que cuando es invierno en el hemisferio norte sea verano en el sur? Si esta fuera la explicación, ambos hemisferios deberían tener las estaciones sincronizadas, pero cualquiera que haya viajado en avión entre ambos verá que no es así. Además, resulta que la órbita de la Tierra es casi circular: solo se aleja del círculo en un 3 por ciento, tal como explicaron en este artículo de National Geographic, por lo que la distancia es siempre bastante similar. De hecho, el momento en que más cerca está la Tierra del Sol (el perihelio), ocurre en enero, en pleno invierno, y solo se distingue del punto más alejado (el afelio) en unos 4,8 millones de kilómetros.

Hay que buscar la causa de las estaciones en otro lugar. Su origen está en una sencilla cifra: 23.5. Estos son los grados de inclinación del eje de la Tierra en relación con el plano de órbita. ¿Qué significa esto? Si el planeta fuera una pelota girando en círculos por el canto de un plato llano, además habría que hacer rotar esta bola. Pero la Tierra no lo hace de forma perpendicular al plato. Está inclinada 23.5 grados, como si fuera una peonza, pero además su eje siempre apunta en la misma dirección.

Las estaciones dependen de las diferencias

Nadie ha visto ni verá nunca ningún eje atravesando la Tierra. El eje es un polo imaginario que atraviesa el globo de polo a polo y sobre el que gira toda la esfera del planeta (este movimiento se llama rotación). Gracias a la rotación hay días y noches y diferencia horaria.

Pero la Tierra no solo rota, también gira alrededor del Sol. Este movimiento se conoce como traslación y es el que determina la duración de los años. Este movimiento, junto a la inclinación del eje de rotación, determinan que haya estaciones.

¿Por qué? A medida que la Tierra gira alrededor del Sol, su eje inclinado siempre señala en la misma dirección (por ejemplo, el extremo norte del eje de la tierra apunta a un punto muy cercano a la estrella polar). Sin embargo, la posición de la Tierra respecto al Sol va cambiando todo el año. La consecuencia es que a veces el polo Norte está inclinado hasta el Sol pero otras veces está inclinado hacia fuera, mientras que en el Sur ocurre lo contrario. Por eso, los dos hemisferios no suelen recibir la misma cantidad de radiación solar y uno acaba calentándose más que el otro.

De hecho, las cuatro estaciones están determinadas por cuatro posiciones principales en la órbita terrestre. Están opuestas dos a dos y reciben el nombre de solsticios y equinoccios.

Solsticios y equinoccios

A partir del solsticio de verano, en el 21 o 22 de junio, es verano en el hemisferio norte e invierno en el sur. En ese momento, es la parte norte del eje de la Tierra la que está inclinada hacia el Sol. Esto provoca que la cantidad de luz y calor que incide sobre el planeta sea máxima en el hemisferio norte y mínima en el sur.

Desde entonces, a medida que avanza el año y la Tierra se mueve en su órbita, los días se van acortando en el norte y la cantidad de luz y calor incidente se va reduciendo en este hemisferio. Un importante cambio ocurre en el equinoccio de otoño, alrededor del 22 o 23 de septiembre. En ese momento, la duración de los días prácticamente se iguala en el hemisferio norte y en el sur.

A partir de ese momento, el sur vence al norte y se lleva cada día más tiempo de luz (unos tres minutos más cada día). En el norte comienza el otoño y en el sur la primavera.

El sur llega a su auge de luz diurna en el solsticio de invierno. En torno al 21 o 22 de diciembre la cantidad de luz incidente es máxima en el sur y mínima en el norte. Por eso el invierno azota el mundo al norte del ecuador y el verano bendice lo que queda al sur. Sin embargo, a partir de ese día se invierte el ciclo. Los días comienzan a acortarse en el sur y a alargarse en el norte.

El 21 o 22 de marzo llega el equinoccio de primavera. La duración de los días es casi igual al norte y al sur, pero a partir de ese momento, el sur comienza a perder horas diurnas e favor del norte.

El terminador en acción

En el siguiente vídeo puede verse el terminador, la línea difusa (a causa del grosor de la atmósfera) que marca la transición entre el día y la noche. Durante los equinoccios, la línea atraviesa la Tierra de polo a polo. En los solsticios, la inclinación se invierte. En el vídeo, cada mes se resume en un segundo. La película comienza en septiembre de 2010 y acaba en marzo de 2011, en la fecha de los equinoccios.

¿Y si el eje no estuviera inclinado?

Si el eje no estuviera inclinado, el terminador siempre estaría vertical y no habría estaciones. Algo así ocurre en Mercurio, que siempre está en un equinoccio de días idénticos. Si el eje estuviera más inclinado de 23.5 grados, las diferencias estacionales serían más drásticas. Esto ocurre por ejemplo en Marte, cuyo eje está un grado y medio más inclinado que el terrestre. Por último, si el eje de rotación del planeta estuviera inclinado 90 grados, cada hemisferio estaría caliente la mitad del año y frío la otra mitad. En Urano ocurre algo muy parecido, puesto que tiene 98 grados de inclinación. Pero como su año dura 84 años terrestres, los veranos y los inviernos se alargan 42 años en cada hemisferio.

El origen de la inclinación

Se supone que después de la formación de la Tierra su eje de rotación era perpendicular al plano de órbita definido por su movimiento de traslación. Pero algo inesperado ocurrió. Un gran cuerpo, conocido como Theia, impactó contra su superficie a gran velocidad. El choque produjo un cataclismo global que destruyó la superficie y liberó al espacio una gran cantidad de escombros. Con el tiempo, estos residuos se agregaron y formaron un cuerpo muy familiar en el cielo: la Luna.

¿Por qué las cosas no ocurren con exactitud?

En realidad, el panorama es más complicado de lo explicado hasta aquí. La atmósfera alarga ligeramente los días (a causa de la refracción, la misma «ilusión óptica» que dobla la imagen de un lápiz bajo el agua), porque hace aparecer al Sol por encima del horizonte durante unos instantes cuando ya en realidad está bajo él. Además, la duración de los días no es la misma en todos los lugares de la Tierra, sino que depende de la latitud o distancia al ecuador (por eso en invierno los días son más largos en España, más cortos en Londres e inexistentes más al norte del círculo polar).

La primera foto de la historia de la Tierra junto a la Luna


ABC.es

  • Se han cumplido 40 años de la primera imagen que captó a ambas en la misma toma. La fotografía fue hecha por la sonda espacial Voyager 1, lanzada en 1977                        

La Tierra y la Luna, unidas por la gravedad- NASA

El 18 de septiembre de 1977 la sonda Voyager 1 «miró atrás» e hizo la primera foto de la historia que capturó una imagen de la Tierra y la Luna en la misma toma. Apenas hacían 13 días de su lanzamiento desde Cabo Cañaveral, en Florida (Estados Unidos).

La instantánea, tomada a una distancia de cerca de 11,7 millones de kilómetros, fue el primer fruto de una misión mítica que exploró los planetas exteriores del Sistema Solar (Júpiter, Saturno, Urano y Neptuno) y muchas de sus lunas, y que incluso llegó a los límites de nuestro sistema planetario: desde 2012 la sonda Voyager 1 surca el espacio interestelar y ya no está bajo la influencia del viento solar.

Después de la toma de la Tierra y la Luna, el largo viaje de la Voyager la llevó hasta las cercanías de Júpiter, el 9 de marzo de 1979. Allí, los astrónomos descubrieron los primeros volcanes más allá de la Tierra, en la luna Ío, y que la gran mancha roja de Júpiter era una gran tormenta con aspecto de ciclón.Después, las dos sondas Voyager se encontrarían con Saturno, Urano y Neptuno y tomarían espectaculares imágenes de su, aparentemente, tranquila superficie.

Pero si una imagen cambió la visión sobre el espacio fue la del famoso «punto azul pálido» (o «pale blue dot»). El 14 de febrero de 1990, casi 13 años después de su lanzamiento, la Voyager 1 hizo sus últimas fotos del Sistema Solar. Captó todos los planetas, apenas puntos en la negrura del espacio, a una distancia de cerca de 6.000 millones de kilómetros. La imagen de la Tierra inspiró a Carl Sagan, quien acuñó el término de «punto azul pálido» para referirse a lo frágil y excepcional que es nuestro planeta.

Después de eso, la Voyager 1 se sumergió en la vasta negrura del Sistema Solar y comenzó un largo viaje en el que ningún objeto está lo suficientemente cerca como para poder fotografiarlo. No será hasta dentro de 40.000 años cuando la Voyager 1 «se acercará» a 1,6 años luz de distancia de la estrella AC+79 3888.

Los colonos «marcianos» acaban su misión tras ocho meses de aislamiento


ABC.es

  • Seis investigadores abandonaron el hábitat donde han estado viviendo para simular la vida en Marte. En todo ese tiempo, se ha analizado los conflictos sociales y los efectos psicológicos de la experiencia

Los colonos han vivido con algunas de las incomodidaes típicas de los astronautas – HI-SEAS.ORG

Ocho meses después de su comienzo, la simulación de la misión humana a Marte ha finalizado este domingo, tal como ha informado Phys.org. Seis investigadores, cuyo trabajo ha sido apoyado por la NASA, han salido de su aislamiento en una remota base construida en un volcán de Hawái. Su principal tarea ha sido ayudar a la agencia espacial estadounidense a comprender los efectos psicológicos a largo plazo y los conflictos sociales que aparecerían al enviar una misión tripulada a Marte, que al menos debería de extenderse dos o tres años.

Los colonos, cuatro hombres y dos mujeres, han vivido este tiempo en un hábitat parecido al que se podría usar en el planeta rojo, y construido sobre una desértica planicie, con un paisaje similar al marciano. Durante ocho meses han sufrido algunas de las incomodidades típicas de los astronautas, como la falta de espacio o la comida deshidratada. Por eso, en cuanto salieron del aislamiento disfrutaron de un banquete con verduras, fruta fresca y tortilla acompañados por periodistas e investigadores.

«Hemos aprendido, por encima de todo, que el conflicto, incluso en el mejor de los equipos, va a aparecer», ha dicho en un comunicado Kim Binsted, profesor de la Universidad de Hawái y director de la investigación. «Por eso, es muy importante tener una tripulación realmente resiliente, que sea capaz de ver el conflicto y responder a él»

Estos ocho meses, los colonos «marcianos» han vivido en un refugio recubierto de vinilo del tamaño de una casa de tres habitaciones, con cerca de 111 metros cuadrados. En su interior hay un pequeño habitáculo personal para dormir, una cocina, un laboratorio y un baño compartido, con una ducha y dos inodoros. La comida y los suministros se lanzaban a distancia y los colonos los recogían con un robot.La comida era deshidratada o enlatada, y las comunicaciones con el exterior sufrieron siempre un retraso de 20 minutos, condición que aparecería en Marte a causa de la distancia que le separa de la Tierra. Aunque los colonos no han estado confinados en el hábitat, cuando salían al exterior para hacer sus tareas debían vestir un equipo que recuerda a un traje espacial.

Esta ha sido la quinta misión de un total de seis estudios financiados por la NASA y hechos en cooperación con la Universidad de Hawái para estudiar la viabilidad de una misión tripulada a Marte. El programa, que recibe el nombre de «Hawaii Space Exploration Analog and Simulation», o «HI-SEAS». En estos momentos, la universidad de Hawái ya está preparando los planes para la sexta y última misión en el hábitat.

Durante estos ocho meses, los científicos han usado sensores para analizar el estado de ánimo de los colonos. Por ejemplo, vigilaron el volumen de las voces, intentaron averiguar si los habitantes estaban tratando de evitar a alguien o si estaban discutiendo. Aparte de esto, propios colonos registraron sus pensamientos en un diario y participaron en juegos para medir su compatibilidad y sus niveles de estrés. Cuando la tensión era alta, pudieron usar dispositivos de realidad virtual como válvula de escape, en los que se desplazaban a paisajes familiares o a playas tropicales, y que podrían ser usados en una misión espacial.

Binsted ha explicado que las misiones anteriores, que duraron ocho y 12 meses, se centraron en la cohesión y el rendimiento del equipo, pero que en este caso el objetivo era distinto: «Hemos dado un paso adelante y estamos analizando la selección y la composición de las tripulaciones».

El fracaso de «Biosfera 2»

En la mente de todos estaba el gran fiasco de «Biosfera 2», un proyecto lanzado en 1990 y de dos años de duración en el que una tripulación de cuatro hombres y cuatro mujeres debían vivir en un invernadero con varios ecosistemas, cultivar plantas, criar animales y reciclar su propio aire. Los niveles de dióxido de carbono se dispararon y muchas plantas y animales murieron, por lo que los participantes pasaron hambre y salieron de la esfera sin hablarse con alguno de sus compañeros.

En esta ocasión, los resultados parecen ser mejores. Laura Lark, especialista en tecnología de la misión, ha dicho que el objetivo de la NASA de ir a Marte es razonable: «El viaje espacial es absolutamente posible a largo plazo», ha dicho en un vídeo desde el interior del hábitat. «Eso sí, aún hay retos técnicos que solucionar. Y también factores humanos en los que hay que pensar».

Una nave de la NASA descubre diez nuevos asteroides que pueden ser peligrosos para la Tierra


ABC.es

  • La misión ha localizado durante el último año un centenar de objetos celestes hasta ahora desconocidos, una treintena en el vecindario de nuestro planeta

Los objetos seguidos por Neowise en tres años de misión. Los círculos verdes representan los objetos cercanos a la Tierra (asteroides y cometas que vienen dentro de 1,3 unidades astronómicas del Sol; una unidad astronómica es la distancia de la Tierra al Sol). Los cuadrados amarillos son cometas. y los puntos grises representan todos los otros asteroides, que están en su mayoría en el cinturón principal entre Marte y Júpiter. Se muestran las órbitas de Mercurio, Venus, la Tierra y Marte. – NASA/JPL-Caltech/UCLA/JHU

La misión Neowise (Near-Earth Object Wide-Field Infrared Survey Explorer) de la NASA, dedicada a localizar, caracterizar y rastrear asteroides y cometas que se acercan a la Tierra, ha descubierto en su tercer año en funcionamiento nueve asteroides potencialmente peligrosos para nuestro planeta. En total, durante este último año la nave espacial ha identificado 97 objetos celestes hasta ahora desconocidos. De ellos, 28 eran objetos cercanos a la Tierra; 64, asteroides del cinturón principal y cinco, cometas.

La nave espacial ha caracterizado un total de 693 objetos cercanos a la Tierra desde que la misión fue reiniciada en diciembre de 2013. De ellos, 114 son nuevos (Puedes ver un vídeo aquí). «Neowise no sólo descubre asteroides y cometas previamente desconocidos, sino que proporciona excelentes datos sobre muchos de los que ya están en el catálogo», dice Amy Mainzer, investigadora principal de la misión en el Laboratorio de Propulsión a Chorro (JPL) de la NASA en Pasadena, California.

Los objetos cercanos a la Tierra (llamados NEOs, por sus siglas en inglés) son cometas y asteroides que han sido empujados por la atracción gravitatoria de los planetas de nuestro sistema solar en órbitas que les permiten entrar en la vecindad de la Tierra. Diez de los objetos descubiertos por Neowise en el último año han sido clasificados como asteroides potencialmente peligrosos, en función de su tamaño y sus órbitas. El pasado año, fueron ocho las rocas de este tipo localizadas. Su seguimiento resulta fundamental para poder prevenir futuros impactos, ya que el golpe contra la atmósfera de, por ejemplo, una roca de apenas diez metros puede causar una explosión equivalente a tres bombas atómicas.

Un cometa raro

La capacidad de Neowise para recoger información es magnífica. También durante su tercer año, la nave captó más de 2,6 millones de imágenes de infrarrojo del cielo. Unidas a las conseguidas en los dos primeros años de la misión, completan un solo archivo que contiene aproximadamente 7,7 millones de conjuntos de imágenes y una base de datos de más de 57.700 millones de detecciones de código extraídas de esas imágenes.

Las imágenes también contienen atisbos de objetos raros, como el cometa C/2010 L5 WISE. Una nueva técnica para conocer el comportamiento de los cometas mostró que este en particular experimentó una breve explosión a su paso por el sistema solar interior.

«Los cometas que tienen arranques bruscos no se encuentran comúnmente, pero esto puede deberse más a la naturaleza repentina de la actividad que a su rareza inherente», dice Emily Kramer, autora principal del artículo sobre el estudio de Neowise. «Es muy bueno para los astrónomos ver y recoger datos de cometas cuando sucede un estallido, pero dado que la actividad es tan efímera, simplemente les podría pasar por alto la mayor parte del tiempo».

La nueva técnica identifica el tamaño y cantidad de partículas de polvo en el entorno del cometa, y cuándo fueron expulsadas de su núcleo, revelando la historia de su actividad. De esta forma, futuros estudios de todo el cielo podrán ser capaces de encontrar y recoger datos sobre más estallidos de cometas cuando sucedan.

Originalmente llamada WISE, la nave espacial de la NASA fue lanzada en diciembre de 2009. Entró en estado de hibernación en 2011 después de completar su misión astrofísica primaria. En septiembre de 2013, se reactivó, se le renombró Neowise y se le asignó una nueva misión: identificar la población de objetos potencialmente peligrosos cercanos a la Tierra. Neowise también caracteriza las poblaciones más distantes de asteroides y cometas para proporcionar información sobre sus tamaños y composiciones. Es nuestro vigilante en el espacio.

Un asteroide de 650 metros se aproximará a la Tierra el 19 de abril


El Mundo

Recreación de un asteroide acercándose a la Tierra. NASA

Fue bautizado como 2014 JO25, tiene 650 metros de diámetro y fue descubierto por el Mount Lemmon Survey en mayo de 2014.

Se trata del asteroide de este tamaño que más se acerca al planeta Tierra en los últimos 13 años ya que se aproximará a la Tierra a una distancia aproximada de 4,6 distancias lunares el próximo 19 de abril. Cada distancia lunar corresponde a algo más de 384.000 kilómetros, la distancia entre la Tierra y su satélite, por lo que el asteroide pasará a unos 1,8 millones de kilómetros del planeta azul.

Este acercamiento es el más próximo de un asteroide, al menos de este tamaño o similar, desde el encuentro con 4179 Toutatis, que pasó a cuatro distancias lunares en septiembre de 2004, según el radar Goldstone de la NASA. El siguiente acercamiento previsto de un objeto con un diámetro mayor o igual a éste tendrá lugar cuando el asteroide 1999 AN10, de 800 metros de diámetro, se aproxime a una distancia lunar en agosto de este año.

El asteroide 2014 JO25 estará cerca del Sol hasta el próximo 19 de abril, momento en que se encontrará en una situación favorable para las observaciones y, a partir de entonces, se convertirá en uno de los principales objetivos del radar de asteroides durante este año. Debido a su cercanía al Sol, no se espera conocer su periodo de rotación antes de las observaciones del radar.

Los astrónomos calculan que este asteroide no se ha aproximado tanto a la Tierra desde hace, al menos, 400 años. Y no hay conocimiento de futuras aproximaciones tan cercanas como ésta hasta el año 2500.

A pesar de haber sido clasificado como un «Asteroide Potencialmente Peligroso» por el Minor Planet Center, no hay motivos para la alarma porque no hay riesgo de choque con la Tierra. Y es que este centro estadounidense califica bajo este nombre a todos los cometas o asteroides cercanos a la Tierra con una órbita tal que tiene potencial para acercarse a ésta y un tamaño suficiente como para causar daños significativos en caso de impacto. Además, se considera que los asteroides pertenecientes a esta lista no suponen una amenaza para la Tierra en los próximos 100 años o más. La última actualización de esta lista, en marzo de 2017, incluye a 1.786 asteroides.

El Marte primitivo se parecía al Ártico


El Mundo

Vista del cráter Gale NASA

Vista del cráter Gale NASA

Marte es en la actualidad un planeta extremadamente seco y frío, con un ambiente extraordinariamente inhóspito para la vida como la conocemos en la Tierra. Los científicos saben, sin embargo, que en el pasado tuvo agua y un clima diferente al actual. Continuando con el trabajo que iniciaron otros vehículo robóticos, el rover de la NASA Curiosity está buscando desde agosto de 2012 pruebas que ayuden a reconstruir cómo era el planeta rojo en el pasado.

Un estudio publicado en la revista PNAS ofrece algunas pistas que permiten trazar un retrato de cómo pudo haber sido ese Marte primitivo basándose en la escasísima cantidad de dióxido de carbono (C02) que el rover halló al analizar sedimentos de aquella época en el cráter Gale, una de las zonas que está explorando. Según propone este equipo de investigadores, en el que participa el español Alberto G. Fairén, del Centro de Astrobiología (CAB/CSIC-INTA), hace 3.500 millones de años esa zona de Marte habría albergado un lago glaciar rodeado por enormes masas de hielo. Un entorno que recordaría al del Ártico terrestre.

Los sedimentos que ha analizado el rover contienen minerales, como arcillas o sulfatos, que sugieren que, en el pasado, esa superficie estuvo en contacto con agua líquida. Un dato, en principio, incompatible con la escasa cantidad de CO2 detectado. Y es que los científicos creían que para que hubiera agua líquida, habría sido necesaria una determinada temperatura, que es propiciada a su vez por un mínimo de CO2 en la atmósfera, ya que este gas genera un efecto invernadero y calienta el planeta.

Según relata Fairén a EL MUNDO, los modelos climáticos que simulan la atmósfera primitiva de Marte mostraban que hace falta cerca de un bar de CO2 para poder tener agua líquida en Marte hace 3500 millones de años. «Sin embargo, las investigaciones de Curiosity confirman que, en realidad, había tan sólo entre 10 y 100 veces menos de esa cantidad mínima. Es decir, entonces había unas decenas o tal vez unos pocos cientos de milibares de CO2. Esto es mucho más que ahora, que sólo hay 6 milibares, pero insuficiente para calentar el planeta. Los modelos nos dicen que harían falta al menos alrededor de mil milibares para generar un efecto invernadero suficiente», detalla.

«Con el poco CO2 que ha encontrado en los sedimentos de Gale, los modelos atmosféricos predicen temperaturas medias por debajo de -50C. Pero algo se nos escapa, porque Curiosity ha descubierto en esos mismos sedimentos evidencias geomorfológicas de lagos duraderos, deltas y torrenteras bajo un clima no muy frío hace 3.500 millones de años. Esta es la contradicción que plantea el artículo, y que en este momento no sabemos resolver. Una alternativa es que fuera un lago glaciar, en un ambiente muy frío, como los polos de la Tierra hoy. Esta posibilidad está siendo considerada seriamente, pero no tenemos una respuesta final todavía», admite Fairén, que espera poder responder a esa cuestión con más investigación en el futuro. «Por eso precisamente es un gran avance. La ciencia es una serie de preguntas, no un catálogo de respuestas», argumenta.

Curiosity es un laboratorio andante así que las muestras que recoge, las procesa in situ, antes de enviar los resultados a la NASA. Para hacer esta investigación, tomó rocas de la superficie y de hasta cinco centímetros de profundidad, que es el máximo que puede perforar. «A partir de ahí, los investigadores analizamos los datos, y los utilizamos para generar modelos que puedan que puedan responder preguntas», dice Fairén, que investigó durante seis años en la NASA.

Cómo y por qué cambió tanto el planeta rojo sigue siendo una incógnita: «Es posible que Marte tuviera más CO2 en su atmósfera hace entre 3.500 y 4.200 millones de años. En aquel tiempo, habría sido más sencillo que el planeta tuviera agua líquida en la superficie. Hoy está absolutamente seco y es muy frío. Es muy interesante que Curiosity esté estudiando los sedimentos de un lago que existió en Gale justamente en la época de transición entre el Marte húmedo y el Marte seco», añade. Según recuerda, el robot descubrió hace dos años que Marte ya había perdido la mitad de su agua y gran parte de su atmósfera hace 3.500 millones de años, cuando se formó el lago de Gale, por lo que considera que sus investigaciones pueden «proporcionar muchísima información acerca de la evolución climática de Marte y de cómo, cuándo y porqué perdió su agua y su atmósfera».

¿Pudo haber formas de vida extremas en ese escenario de hielo? «La vida en la Tierra ocupa casi todos los rincones del planeta, incluyendo las zonas polares. Por lo tanto, si en Gale había un lago glaciar, el entorno no habría sido un impedimento para la vida. De hecho, si en algún momento hubo vida en Marte y apareció, como en la Tierra, muy al principio de la historia geológica del planeta, solamente habría tenido que adaptarse al entorno glaciar».

AIDA, la misión que puede salvar la Tierra


ABC.es

  • Las agencias espaciales de Europa y Estados Unidos tratarán por primera vez de desviar un asteroide de su rumbo

El blanco es una pareja de asteroides llamada Didymos. Y el objetivo, demostrar si estamos, o no, preparados para desviar de su trayectoria un asteroide en ruta de colisión contra la Tierra. Para ello, las agencias espaciales europea y norteamericana, ESA y NASA, se han unido para llevar a cabo una misión sin precedentes en toda la historia espacial. Tras las siglas AIDA (Asteroid Impact and Deflection Assessment) se esconde, en efecto, el mejor plan de defensa planetaria ideado hasta la fecha para evitar el catastrófico impacto de una roca espacial contra nosotros. Está previsto que AIDA reciba luz verde este mismo mes de diciembre. Por eso, las numerosas empresas implicadas, entre ellas varias españolas, están ya culminando los trabajos de definición detallada de las diferentes fases de esta histórica misión. Se trata de una carrera contra reloj, ya que Didymos no espera. En estos momentos, en efecto, los dos asteroides se dirigen a toda velocidad hacia nosotros, y en el año 2022 se encontrarán a solo 11 millones de km. de la Tierra. Será en ese, y solo en ese momento, cuando estén lo suficientemente cerca como para realizar la prueba, de modo que no hay ni un minuto que perder. AIDA será, pues, la primera demostración real de la técnica de impacto cinético para cambiar la trayectoria de un asteroide en el espacio. La misión consta de dos naves independientes, la DART (Double Asteroid Redirection Test), de la NASA, y la AIM (Asteroid Impact Mission) de la ESA. Las dos deberán poner a prueba las tecnologías desarrolladas en ambos continentes para desviar asteroides potencialmente peligrosos. Por eso, el principal objetivo de AIDA es el de demostrar y medir los efectos de un impacto directo contra un pequeño asteroide, y determinar si es suficiente como para desviarlo de su rumbo. El blanco elegido para la demostración es sistema binario de asteroides Didymos, que consiste en una roca principal de unos 800 metros de diámetro y otra secundaria, de 150 metros, que orbita a su alrededor. La prueba de impacto se llevará a cabo contra el miembro más pequeño de la pareja, ya que su tamaño es el más habitual entre los asteroides que pueden suponer una amenaza para la Tierra. De las dos naves, será la estadounidense DART la encargada de hacer impacto, y se estrellará contra la pequeña luna a una velocidad aproximada de 6 km. por segundo. Para no errar su objetivo, DART cuenta con una cámara y un sofisticado software autónomo de navegación. La colisión cambiará la velocidad de la pequeña luna en su órbita alrededor del cuerpo principal en apenas un 1%, justo lo necesario como para observar sus efectos con telescopios desde la Tierra. Y un porcentaje, además, lo suficiemtemente pequeño como para no provocar un involuntario cambio de trayectoria que pudiera hacer que la roca se dirija directamente hacia nosotros. La segunda nave, la europea AIM, que llegará al asteroide unos meses antes que DART, utilizará su amplia gama de instrumentos científicos para estudiar primero todas y cada una de las características de ambos cuerpos, y observar después con todo detalle el impacto de su compañera de misión. AIM llevará a cabo el primer estudio "in situ" de un asteroide binario, proporcionará imágenes en alta resolución de las superficies de ambos cuerpos y medirá sus masas, densidades y formas. Cuando llegue el momento, AIM se colocará en una órbita segura alrededor de Didymos y examinará el material eyectado al espacio tras la colisión de su compañera. Sus instrumentos, además, observarán los efectos del impacto, medirán la posible transferencia de material entre los dos asteroides, observarán el cráter dejado por DART y la forma en que el material de la pequeña luna se redistribuye tras la colisión. AIM también estudará la estructura interna de este fascinante asteroide doble. Módulo de aterrizaje Además, AIM desplegará sobre la superficie del objetivo un módulo de aterrizaje, llamado MASCOT-2 (Mobile Asteroid Surface Scout), para que tome medidas y datos antes, durante y después del impacto de DART. Y liberará también dos pequeños satélites auxiliares, CubeSats, que recabarán datos de los dos asteroideas antes y después del impacto de la nave norteamericana. Si todo va como está previsto, la Agencia Espacial Europea lanzará AIM en Octubre de 2020, y llegará a Didymos en Mayo de 2022. La NASA, por su parte, lanzará DART en Diciembre de 2020 para interceptar al asteroide doble en Octubre de 2022, cuando Didymos esté solo a 11 millones de Km. de la Tierra y sea posible observarlo directamente con telescopios terrestres. Como se ha dicho, Didymos se acerca y no hay tiempo que perder. Por eso, la industria está trabajando a un ritmo frenético para llegar a tiempo a la cita con el asteroide doble. Solo en Europa, más de 40 empresas de 15 estados diferentes llevan desde 2011 poniendo a punto todos y cada uno de los detalles de esta histórica misión. En Madrid, por ejemplo, el grupo GMV está llevando a cabo pruebas críticas en la cámara de navegación proporcionada por el Instituto Max Planck alemán. Para evaluar el software de navegación basado en imágenes de la misión, GMV está haciendo que la cámara examine imágenes que la sonda Rosetta de la ESA tomó al sobrevolar Lutetia, un asteroide de 100 km de diámetro, de camino hacia 67P/Churyumov-Gerasimenko.

El blanco es una pareja de asteroides llamada Didymos. Y el objetivo, demostrar si estamos, o no, preparados para desviar de su trayectoria un asteroide en ruta de colisión contra la Tierra. Para ello, las agencias espaciales europea y norteamericana, ESA y NASA, se han unido para llevar a cabo una misión sin precedentes en toda la historia espacial. Tras las siglas AIDA (Asteroid Impact and Deflection Assessment) se esconde, en efecto, el mejor plan de defensa planetaria ideado hasta la fecha para evitar el catastrófico impacto de una roca espacial contra nosotros.

Está previsto que AIDA reciba luz verde este mismo mes de diciembre. Por eso, las numerosas empresas implicadas, entre ellas varias españolas, están ya culminando los trabajos de definición detallada de las diferentes fases de esta histórica misión. Se trata de una carrera contra reloj, ya que Didymos no espera. En estos momentos, en efecto, los dos asteroides se dirigen a toda velocidad hacia nosotros, y en el año 2022 se encontrarán a solo 11 millones de km. de la Tierra. Será en ese, y solo en ese momento, cuando estén lo suficientemente cerca como para realizar la prueba, de modo que no hay ni un minuto que perder.

AIDA será, pues, la primera demostración real de la técnica de impacto cinético para cambiar la trayectoria de un asteroide en el espacio. La misión consta de dos naves independientes, la DART (Double Asteroid Redirection Test), de la NASA, y la AIM (Asteroid Impact Mission) de la ESA. Las dos deberán poner a prueba las tecnologías desarrolladas en ambos continentes para desviar asteroides potencialmente peligrosos. Por eso, el principal objetivo de AIDA es el de demostrar y medir los efectos de un impacto directo contra un pequeño asteroide, y determinar si es suficiente como para desviarlo de su rumbo.

El blanco elegido para la demostración es sistema binario de asteroides Didymos, que consiste en una roca principal de unos 800 metros de diámetro y otra secundaria, de 150 metros, que orbita a su alrededor. La prueba de impacto se llevará a cabo contra el miembro más pequeño de la pareja, ya que su tamaño es el más habitual entre los asteroides que pueden suponer una amenaza para la Tierra.

De las dos naves, será la estadounidense DART la encargada de hacer impacto, y se estrellará contra la pequeña luna a una velocidad aproximada de 6 km. por segundo. Para no errar su objetivo, DART cuenta con una cámara y un sofisticado software autónomo de navegación. La colisión cambiará la velocidad de la pequeña luna en su órbita alrededor del cuerpo principal en apenas un 1%, justo lo necesario como para observar sus efectos con telescopios desde la Tierra. Y un porcentaje, además, lo suficiemtemente pequeño como para no provocar un involuntario cambio de trayectoria que pudiera hacer que la roca se dirija directamente hacia nosotros.

La segunda nave, la europea AIM, que llegará al asteroide unos meses antes que DART, utilizará su amplia gama de instrumentos científicos para estudiar primero todas y cada una de las características de ambos cuerpos, y observar después con todo detalle el impacto de su compañera de misión. AIM llevará a cabo el primer estudio «in situ» de un asteroide binario, proporcionará imágenes en alta resolución de las superficies de ambos cuerpos y medirá sus masas, densidades y formas. Cuando llegue el momento, AIM se colocará en una órbita segura alrededor de Didymos y examinará el material eyectado al espacio tras la colisión de su compañera. Sus instrumentos, además, observarán los efectos del impacto, medirán la posible transferencia de material entre los dos asteroides, observarán el cráter dejado por DART y la forma en que el material de la pequeña luna se redistribuye tras la colisión. AIM también estudará la estructura interna de este fascinante asteroide doble.

Módulo de aterrizaje

Además, AIM desplegará sobre la superficie del objetivo un módulo de aterrizaje, llamado MASCOT-2 (Mobile Asteroid Surface Scout), para que tome medidas y datos antes, durante y después del impacto de DART. Y liberará también dos pequeños satélites auxiliares, CubeSats, que recabarán datos de los dos asteroideas antes y después del impacto de la nave norteamericana.

Si todo va como está previsto, la Agencia Espacial Europea lanzará AIM en Octubre de 2020, y llegará a Didymos en Mayo de 2022. La NASA, por su parte, lanzará DART en Diciembre de 2020 para interceptar al asteroide doble en Octubre de 2022, cuando Didymos esté solo a 11 millones de Km. de la Tierra y sea posible observarlo directamente con telescopios terrestres.

Como se ha dicho, Didymos se acerca y no hay tiempo que perder. Por eso, la industria está trabajando a un ritmo frenético para llegar a tiempo a la cita con el asteroide doble. Solo en Europa, más de 40 empresas de 15 estados diferentes llevan desde 2011 poniendo a punto todos y cada uno de los detalles de esta histórica misión.

En Madrid, por ejemplo, el grupo GMV está llevando a cabo pruebas críticas en la cámara de navegación proporcionada por el Instituto Max Planck alemán. Para evaluar el software de navegación basado en imágenes de la misión, GMV está haciendo que la cámara examine imágenes que la sonda Rosetta de la ESA tomó al sobrevolar Lutetia, un asteroide de 100 km de diámetro, de camino hacia 67P/Churyumov-Gerasimenko.

La NASA publica la imagen más completa de la Tierra


El Mundo

  • El satélite fue lanzado el pasado mes de febrero y hace unos días alcanzó su órbita

  • Para lograr esta imagen, se tuvieron que integrar tres fotografías distintas

 Imagen de la Tierra tomada desde el satélite DSCOVR. NASA

Imagen de la Tierra tomada desde el satélite DSCOVR. NASA

Una cámara del satélite Observatorio Climático del Espacio Profundo (DSCOVR) ha captado por primera vez la imagen de un lado completamente iluminado de nuestro planeta, tomada a 1.5 millones de kilómetros de distancia.

Dicha fotografía ha sido capturada por la herramienta EPIC (Cámara de Imagen Policromática de la Tierra) que permite la captación de imágenes en diez bandas distintas para estudiar los fenómenos terrestres. Para lograr esta imagen, se tuvieron que integrar tres fotografías distintas.

«Los beneficios que se pueden obtener de esta primera imagen de nuestro planeta demuestra lo importante que es la observación desde el espacio», afirmó uno de los responsables de la administración espacial, Charlie Bolden. Asimismo, el ex astronauta señala que «quiere que todo el mundo tenga la posibilidad, como él, de apreciar y disfrutar la Tierra como un sistema interactivo e integrado».

Estas vistas de la Tierra así como sus medidas y alertas de los fenómenos meteorológicos causados por el sol, ayudarán a toda persona a controlar los continuos cambios que se producen en la Tierra y entender cómo nuestro planeta encaja en el sistema solar.

Estas primeras imágenes muestran los efectos de la luz solar dispersadas por las moléculas de aire, dando a la imagen un tinte azulado característico.

Creado a propuesta del vicepresidente de Estados Unidos Al Gore, se le conoce informalmente como el ‘GoreSat’ y anteriormente como ‘Triana’, en homenaje a Rodrigo de Triana, primer avistador de América en la tripulación de Cristóbal Colón. El Observatorio Climático del Espacio Profundo fue lanzado el pasado mes de febrero y hasta hace solo unos días no había alcanzado su órbita de trabajo.

La foto del día de la NASA es gaditana


El Mundo

  • La agencia espacial norteamericana ha distinguido como «foto astronómica del día» una imagen captada por una pareja de aficionados a la astrofotografía en Puerto Real (Cádiz)
  • Ya fueron premiados hace cuatro años por una imagen de la Nebulosa de Orión hecha desde la sierra de Benamahoma
 La "imagen del día" de la NASA recoge la nebulosa de la estrella "AE Aurigae", conocida como "Estrella Flameante". JESÚS M. VARGAS / M..POYAL

La «imagen del día» de la NASA recoge la nebulosa de la estrella «AE Aurigae», conocida como «Estrella Flameante». JESÚS M. VARGAS / M..POYAL

La agencia espacial norteamericana NASA ha distinguido este martes como «foto astronómica del día» una imagen captada por una pareja de aficionados a la astrofotografía en Puerto Real (Cádiz). Se trata de una imagen captada por el gaditano Jesús Manuel Vargas Ruiz y la ibicenca, afincada en Cádiz, Maritxu Poyal Viúdez. Ambos llevan diez años tomando fotografías del cielo profundo desde varios puntos de la provincia de Cádiz.

No es la primera vez que una de sus imágenes recibe de la NASA la distinción APOD (Astronomy Picture of the Day), que la agencia norteamericana realiza diariamente para reconocer las mejores imágenes astronómicas entre las miles que recibe desde todo tipo de observatorios, naves espaciales, telescopios de gran tamaño (incluyendo el Hubble) y también astrónomos aficionados. Hace 4 años la NASA les otorgó otro APOD por una fotografía de la Nebulosa de Orión hecha desde la sierra de Benamahoma.

La imagen que es hoy APOD de la NASA recoge la nebulosa de emisión de la estrella «AE Aurigae», conocida también como «Estrella Flameante». Ese nombre se debe a que en su interior, la estrella hace brillar intensamente los gases, fundamentalmente hidrógeno, por lo que parece que estuviera ardiendo. La estrella AE Aurigae, visible cerca del centro de la nebulosa, está tan caliente que es azul, está a unos 1.500 años-luz de distancia y se extiende unos 5 años-luz, según explica la NASA en el comentario que escribe sobre esta foto en su web.

Para la obtención de la imagen los astrofotógrafos emplearon un telescopio refractor sobre una montura motorizada y una cámara CCD que a través de filtros especiales (Hydrógeno Alpha, Hydrógeno Alpha, Oxígeno III y Azufre II) capta la luz los gases que emiten los objetos de cielo profundo.

Estos filtros permiten realizar astrofotografías desde lugares cercanos a los núcleos urbanos como en este caso fue el Parque Natural «Campo de las Aletas» de Puerto Real (Cádiz).

Las tomas fueron posteriormente apiladas mediante programas informáticos específicos para poder sumar así la luminosidad de cada una de ellas, y obtener así la imagen final, con un procesado que hace resaltar detalles y matices ocultos.