Clasificación y Evolución de los Homínidos


La clasificación de los seres humanos como uno más de los animales que pueblan la Tierra se establece siguiendo las mismas pautas que para éstos: el hombre pertenece al tipo cordados, clase mamíferos, orden primates, suborden catirrinos, infraorden antropomorfos, familia homínidos, en la cual se incluyen el género Homo y la especie sapiens. Los más de dos mil restos fósiles humanos hallados hasta el momento han hecho que las denominaciones aludan, unas veces, al origen geográfico del yacimiento (hombre de Neandertal, por la localidad alemana de este nombre) y otras, a la posición que ocupa dentro del árbol genealógico de la especie humana.

Los primeros homínidos aparecieron a finales de la era terciaria, hace aproximadamente unos quince millones de años. Como miembro del orden de los primates, el ser humano comparte hasta un 99 % de macromoléculas con los otros individuos del mismo orden; por tanto, debe de existir un antepasado común entre nuestra especie y los Australopithecus, el género más parecido al Homo. Los australopitecos, o monos meridionales, han sido localizados en África meridional y oriental, y su cronología abarcaría de los 6,5 millones de años de los Preaustralopithecus a un millón de años cuando se extinguieron. A lo largo de este largo período pueden subclasificarse en varios grupos y subgrupos, que se diferencian por sus características morfológicas.

Anuncios

El Exoplaneta más parecido a la Tierra


La misión Kepler de la NASA ha encontrado el que hasta el momento sería, el exoplaneta más parecido a la Tierra jamás visto: KOI 172.02, que se encuentra a una distancia aproximada de 140 años luz y tendría un radio un 50% mayor que el de nuestro planeta, indicando que su tamaño es considerablemente más grande.

Aparte de eso, el año en KOI 172.02 es más corto, pues da una vuelta a su sol en 242 días, mientras que por otro lado su aceleración de gravedad es de 14,7 m/seg, lo que se expresa en una gravedad mucho más fuerte que la de nuestro planeta, donde dicha cifra es de 9,8m/seg.

Lo más interesante es que la temperatura del lugar podría ser parecida a la nuestra, si bien un poco más fría, pero permitiendo de todas formas la presencia de agua en su superficie, convirtiéndolo en primera prioridad para apuntar las búsquedas de vida extraterrestre de ahora en adelante.

El Bombardeo Intenso Tardío o Cataclismo Lunar


El bombardeo intenso tardío (conocido también como cataclismo lunar, último bombardeo intenso o LHB) es un período, en torno a hace 3800-4100 millones de años, en el que la Luna y otros cuerpos del Sistema Solar interior sufrieron frecuentes impactos muy violentos de grandes asteroides. Este período es el causante de la mayor parte de los cráteres que actualmente se observan tanto en la Luna como en Mercurio.

El LHB desentrañaría un misterio acerca del origen de la Tierra, ya que, en su historia geológica, apenas existen restos de rocas con más de 3 800 millones de años de antigüedad. Sin embargo, teniendo en cuenta la temperatura inicial y la masa y volumen del planeta, éste debería haber dispuesto de una corteza sólida muchísimo tiempo antes. Incluso considerando el impacto de Theia y la formación de la propia Luna (algo que calentó mucho a nuestro planeta), los datos no encajan: la Tierra debería haber tenido una superficie sólida muchos millones de años antes.

Una explicación que contestaría las dos preguntas es que el responsable de ese calentamiento extra y la desaparición de la primitiva corteza fue justamente el intenso bombardeo tardío. Esa lluvia apocalíptica de meteoritos cubrió la superficie terrestre de cráteres y proporcionó una inmensa cantidad de energía térmica al primitivo planeta. La Tierra no es tan estática como la Luna y es muy difícil hoy tener una idea de cómo debió de ser la cosa, pero podemos realizar estimaciones a partir de los efectos del LHB sobre nuestro satélite, extrapolando los números: decenas de miles de cráteres de más de 20 kilómetros de diámetro se formaron en ese corto período, pero por más impresionante que sea esto, se trató de impactos relativamente pequeños comparados con los más violentos. Se formaron decenas de cráteres de más de 1.000 kilómetros de diámetro, y varios de más de 5.000 kilómetros de diámetro.

Simulación de la hipótesis de resonancia orbital Júpiter-Saturno. Esto habría producido un barrido del Cinturón de Kuiper que hubiera llevado a multitud de cuerpos pequeños a caer a la órbita interna del Sistema Solar.

La teoría del Planeta V

En 2002 los astrónomos John Chambers y Jack Lissauer plantearon una posible causa del LHB: la existencia de un quinto planeta rocoso más allá de Marte, el denominado Planeta V, que podría haber estado entre Marte y el cinturón de asteroides. Utilizando simulaciones por ordenador, Chambers y Lissauer construyeron un modelo en el que el Planeta V tenía una órbita inestable debido a su interacción gravitatoria con los planetas interiores; sin embargo, la inestabilidad era suficientemente pequeña como para que la órbita se modificase poco a poco, de modo que hubo que esperar hasta alrededor de 4.000 millones de años atrás para que el planeta finalmente entrase en una órbita altamente elíptica que lo llevaría primero a cruzar el cinturón de asteroides y luego a precipitarse hacia el Sol, donde desaparecería.

Al atravesar el cinturón de asteroides, el Planeta V impactó contra algunos de ellos, pero además modificó la órbita de muchos otros, haciendo que cayeran hacia la región interior del Sistema: hacia Marte, Venus, la Tierra (y su satélite) y Mercurio, produciendo el cataclismo que denominamos intenso bombardeo tardío. Los modelos matemáticos empleados por estos científicos encajan muy bien con los datos que tenemos pero, por supuesto, no son una prueba concluyente ni de la existencia del LHB ni de la explicación del Planeta V.

La hipótesis de los planetas gaseosos

Otra posible explicación es que la formación del Sistema Solar exterior haya tardado más de lo que pensábamos: algunos modelos muestran que los planetas rocosos interiores se formaron rápidamente, pero la menor densidad de material en la región externa del disco de acreción que formó nuestro sistema pudo hacer que Urano y Neptuno se formasen relativamente tarde —hace unos 4 000 millones de años. Su presencia entonces alteró el equilibrio de muchos cuerpos pequeños del sistema, haciendo que muchos de ellos tuvieran órbitas inestables que los llevaron a caer hacia la región interior e impactar contra los planetas rocosos y sus satélites. Sin embargo, las teorías más aceptadas actualmente postulan una formación muy rápida de los gigantes gaseosos, algo que desmonta esta teoría, ya que Urano y Neptuno hubieran existido entonces desde mucho antes que se produjera el LHB.

La hipótesis de la resonancia orbital

Finalmente, otra serie de simulaciones por ordenador realizadas por R. Gomes, H.F. Levinson, K. Tsiganis y A. Morbidelli, y publicadas en Nature en 2005 postulan otra posible explicación: si la densidad de los objetos más allá de Neptuno es suficientemente grande, es posible que su “tirón gravitatorio” sobre los gigantes gaseosos en la juventud del Sistema Solar haya ido modificando poco a poco su órbita. Unos de ellos afectaron a otros, de manera que casi todos se fueron alejando poco a poco del Sol excepto Júpiter, que se acercó ligeramente a la estrella. Llegado cierto momento, Júpiter y Saturno entraron en una resonancia orbital 1:2 y el Sistema Solar se volvió muy, muy inestable.

Dos cuerpos celestes entran en resonancia orbital cuando sus períodos orbitales (el tiempo que tarda cada uno en dar una vuelta completa) forman una relación sencilla de números enteros. A veces esto no significa mucho, pero otras puede tener consecuencias determinantes: puede hacer que se queden “fijos” en esas órbitas, al tirar uno del otro de modo que no puedan escapar de ellas, en cuyo caso se tiene una configuración muy estable o puede suceder justo lo contrario, si los tirones gravitatorios crean órbitas excéntricas en esos cuerpos o en otros.

En el caso de una resonancia 1:2 entre Júpiter y Saturno, los modelos de Gomes y su equipo muestran que multitud de objetos pequeños del cinturón de asteroides sufrirían perturbaciones en sus órbitas que los precipitarían hacia el interior del sistema mientras los dos grandes gigantes gaseosos seguirían modificando sus propias órbitas hasta tener las actuales –que no tienen esa resonancia –. Esto explicaría, por supuesto, el LHB de manera satisfactoria. Todas las explicaciones tienen algo en común: parten de la base de un Sistema Solar en continua transformación.

Avances en el LHB

Esta semana, dos trabajos en la revista ‘Nature’ revelan claves sobre el origen y la frecuencia de esta lluvia de asteroides y cometas, que se inició cuando se formaba el Sistema Solar.En uno de los trabajos, los investigadores Brandon Johnson y Jay Melosh, de la Universidad Purdue (Estados Unidos) han analizado un rastro de polvo procedente de estos cometas en capas rocosas donde quedó incrustado. “Se trata de partículas que se vaporizan durante el impacto del asteroide y llegan a la atmósfera, allí se vitrifican (solidifican) y vuelven a caer a la superficie dejando una capa que son las huellas de estas catástrofes”, explica el investigador español Jesús Martínez-Frías, del Centro de Astrobiología (CSIC-INTA).

Velocidad de los impactos

Las características de estas partículas, que se expandieron por el espacio como una gran pluma de vapor durante la colisión, ayudan a determinar cómo son los asteroides o a qué velocidad llegaron al planeta. Las esférulas analizadas por Johnson y Melosh son de impactos de hace entre 3.500 millones y 35 millones de años e indican que el número de proyectiles que chocaron durante esta tormenta de rocas fue mayor de lo que se pensaba, y luego fue decayendo.

Sus conclusiones dan crédito a la hipótesis mantenida hasta ahora de que cambios en el Sistema Solar influyeron en este bombardeo, dado que se alteró la trayectoria de objetos de un Cinturón de Asteroides situado entre Marte y Júpiter, enviándolos rumbo a la Tierra. “Esta es la primera evidencia sólida de lo que sucedió en realidad”, apunta Melosh en un comunicado.

Los investigadores, gracias a estas redondas ‘gotas’ de roca, han deducido que algunos asteroides tenían entre seis y 58 kilómetros de diámetro (varias veces más grande que el que acabó con los dinosaurios), pero la mayoría eran más pequeños y su patrón de distribución coincide con la del mencionado Cinturón de Asteroides. “Tenemos por vez primera una conexión directa entre las dimensiones de los cráteres en la Tierra primitiva y los asteroides que hay en el espacio”, destaca el científico americano.

Los cráteres de la Luna

Hasta ahora, y dado que los cráteres de aquellos primeros momentos han desaparecido o están erosionados, los investigadores se centraban en el estudio de los impactos en la Luna. “Las esférulas nos abren un nuevo camino para conocer la historia terrestre, porque todos los asteroides de más de 10 kilómetros de diámetro dejaron una capa de esférulas”, añade Johnson, quien recuerda que estos impactos pudieron ser el origen de la vida, al haber introducido materia orgánica en un planeta muerto.

Para estudiar estas esférulas, conservadas en el expediente geológico y de no más de un milímetro de diámetro, utilizaron modelos de ordenador que previamente habían desarrollado sobre condensación.

Melosh cree que sus resultados permitirán a su equipo calcular los efectos del impacto de uno o varios asteroides sobre este planeta. Esta ‘calculadora’ podría permitir a cualquier averiguar los daños de una colisión de este tipo en el planeta.

Rocas volatilizadas

El segundo trabajo, de William F. Bottke, como primer firmante, concluye que aquel gigantesco bombardeo duró más de lo que se pensaba, para lo cual también analizan esférulas procedentes de impactos. Al menos han localizado siete capas de estos restos de rocas volatilizadas que se formaron hace entre 3.230 y 3.470 millones de años; otras cuatro capas de hace entre 2.490 y 2.630 millones de años; y otras de hace entre 1.700 y 2.100 millones de años.

Aseguran que se debió a una desastabilización del Cinturón de Asteroides por la migración de un planeta gigante.

“Los autores aportan modelos que sugieren una dinámica asteroidal, en este período más turbulento de reorganización planetaria del Sistema Solar primigenio, que favoreció el acercamiento de asteroides a la Tierra causando gigantescos impactos”, señala Martínez-Frías.

Para el investigador español, para confirmar estos modelos habrá que investigar en la Luna “ya que nuestro satélite parece ser, en sí misma, una evidencia de estas catástrofes, donde los procesos que ocurrieron en estas etapas se conservan mejor que en la Tierra (debido a la inactividad geológica) y por ello pueden estudiarse mejor que en nuestro propio planeta”.

Fuente: Wiki, El Mundo

El número 23.5, la cifra que explica por qué hay estaciones


ABC.es

  • Esa es la inclinación del eje de la Tierra y la causa de que los dos hemisferios del planeta solo reciban la misma cantidad de energía del Sol dos días al año, durante los equinoccios

Si el eje de la Tierra no estuviera inclinado no habría estaciones. Esto ocurre por ejemplo en el planeta Mercurio – NASA

¿Por qué hay estaciones? Muchas personas dirán que su causa está relacionada con la distancia que hay entre la Tierra y el Sol: cuando el planeta está más cerca de la estrella, el globo está más caliente. Cuando está más lejos, más frío. Pero, ¿eso explicaría que cuando es invierno en el hemisferio norte sea verano en el sur? Si esta fuera la explicación, ambos hemisferios deberían tener las estaciones sincronizadas, pero cualquiera que haya viajado en avión entre ambos verá que no es así. Además, resulta que la órbita de la Tierra es casi circular: solo se aleja del círculo en un 3 por ciento, tal como explicaron en este artículo de National Geographic, por lo que la distancia es siempre bastante similar. De hecho, el momento en que más cerca está la Tierra del Sol (el perihelio), ocurre en enero, en pleno invierno, y solo se distingue del punto más alejado (el afelio) en unos 4,8 millones de kilómetros.

Hay que buscar la causa de las estaciones en otro lugar. Su origen está en una sencilla cifra: 23.5. Estos son los grados de inclinación del eje de la Tierra en relación con el plano de órbita. ¿Qué significa esto? Si el planeta fuera una pelota girando en círculos por el canto de un plato llano, además habría que hacer rotar esta bola. Pero la Tierra no lo hace de forma perpendicular al plato. Está inclinada 23.5 grados, como si fuera una peonza, pero además su eje siempre apunta en la misma dirección.

Las estaciones dependen de las diferencias

Nadie ha visto ni verá nunca ningún eje atravesando la Tierra. El eje es un polo imaginario que atraviesa el globo de polo a polo y sobre el que gira toda la esfera del planeta (este movimiento se llama rotación). Gracias a la rotación hay días y noches y diferencia horaria.

Pero la Tierra no solo rota, también gira alrededor del Sol. Este movimiento se conoce como traslación y es el que determina la duración de los años. Este movimiento, junto a la inclinación del eje de rotación, determinan que haya estaciones.

¿Por qué? A medida que la Tierra gira alrededor del Sol, su eje inclinado siempre señala en la misma dirección (por ejemplo, el extremo norte del eje de la tierra apunta a un punto muy cercano a la estrella polar). Sin embargo, la posición de la Tierra respecto al Sol va cambiando todo el año. La consecuencia es que a veces el polo Norte está inclinado hasta el Sol pero otras veces está inclinado hacia fuera, mientras que en el Sur ocurre lo contrario. Por eso, los dos hemisferios no suelen recibir la misma cantidad de radiación solar y uno acaba calentándose más que el otro.

De hecho, las cuatro estaciones están determinadas por cuatro posiciones principales en la órbita terrestre. Están opuestas dos a dos y reciben el nombre de solsticios y equinoccios.

Solsticios y equinoccios

A partir del solsticio de verano, en el 21 o 22 de junio, es verano en el hemisferio norte e invierno en el sur. En ese momento, es la parte norte del eje de la Tierra la que está inclinada hacia el Sol. Esto provoca que la cantidad de luz y calor que incide sobre el planeta sea máxima en el hemisferio norte y mínima en el sur.

Desde entonces, a medida que avanza el año y la Tierra se mueve en su órbita, los días se van acortando en el norte y la cantidad de luz y calor incidente se va reduciendo en este hemisferio. Un importante cambio ocurre en el equinoccio de otoño, alrededor del 22 o 23 de septiembre. En ese momento, la duración de los días prácticamente se iguala en el hemisferio norte y en el sur.

A partir de ese momento, el sur vence al norte y se lleva cada día más tiempo de luz (unos tres minutos más cada día). En el norte comienza el otoño y en el sur la primavera.

El sur llega a su auge de luz diurna en el solsticio de invierno. En torno al 21 o 22 de diciembre la cantidad de luz incidente es máxima en el sur y mínima en el norte. Por eso el invierno azota el mundo al norte del ecuador y el verano bendice lo que queda al sur. Sin embargo, a partir de ese día se invierte el ciclo. Los días comienzan a acortarse en el sur y a alargarse en el norte.

El 21 o 22 de marzo llega el equinoccio de primavera. La duración de los días es casi igual al norte y al sur, pero a partir de ese momento, el sur comienza a perder horas diurnas e favor del norte.

El terminador en acción

En el siguiente vídeo puede verse el terminador, la línea difusa (a causa del grosor de la atmósfera) que marca la transición entre el día y la noche. Durante los equinoccios, la línea atraviesa la Tierra de polo a polo. En los solsticios, la inclinación se invierte. En el vídeo, cada mes se resume en un segundo. La película comienza en septiembre de 2010 y acaba en marzo de 2011, en la fecha de los equinoccios.

¿Y si el eje no estuviera inclinado?

Si el eje no estuviera inclinado, el terminador siempre estaría vertical y no habría estaciones. Algo así ocurre en Mercurio, que siempre está en un equinoccio de días idénticos. Si el eje estuviera más inclinado de 23.5 grados, las diferencias estacionales serían más drásticas. Esto ocurre por ejemplo en Marte, cuyo eje está un grado y medio más inclinado que el terrestre. Por último, si el eje de rotación del planeta estuviera inclinado 90 grados, cada hemisferio estaría caliente la mitad del año y frío la otra mitad. En Urano ocurre algo muy parecido, puesto que tiene 98 grados de inclinación. Pero como su año dura 84 años terrestres, los veranos y los inviernos se alargan 42 años en cada hemisferio.

El origen de la inclinación

Se supone que después de la formación de la Tierra su eje de rotación era perpendicular al plano de órbita definido por su movimiento de traslación. Pero algo inesperado ocurrió. Un gran cuerpo, conocido como Theia, impactó contra su superficie a gran velocidad. El choque produjo un cataclismo global que destruyó la superficie y liberó al espacio una gran cantidad de escombros. Con el tiempo, estos residuos se agregaron y formaron un cuerpo muy familiar en el cielo: la Luna.

¿Por qué las cosas no ocurren con exactitud?

En realidad, el panorama es más complicado de lo explicado hasta aquí. La atmósfera alarga ligeramente los días (a causa de la refracción, la misma «ilusión óptica» que dobla la imagen de un lápiz bajo el agua), porque hace aparecer al Sol por encima del horizonte durante unos instantes cuando ya en realidad está bajo él. Además, la duración de los días no es la misma en todos los lugares de la Tierra, sino que depende de la latitud o distancia al ecuador (por eso en invierno los días son más largos en España, más cortos en Londres e inexistentes más al norte del círculo polar).

Un asteroide de 650 metros se aproximará a la Tierra el 19 de abril


El Mundo

Recreación de un asteroide acercándose a la Tierra. NASA

Fue bautizado como 2014 JO25, tiene 650 metros de diámetro y fue descubierto por el Mount Lemmon Survey en mayo de 2014.

Se trata del asteroide de este tamaño que más se acerca al planeta Tierra en los últimos 13 años ya que se aproximará a la Tierra a una distancia aproximada de 4,6 distancias lunares el próximo 19 de abril. Cada distancia lunar corresponde a algo más de 384.000 kilómetros, la distancia entre la Tierra y su satélite, por lo que el asteroide pasará a unos 1,8 millones de kilómetros del planeta azul.

Este acercamiento es el más próximo de un asteroide, al menos de este tamaño o similar, desde el encuentro con 4179 Toutatis, que pasó a cuatro distancias lunares en septiembre de 2004, según el radar Goldstone de la NASA. El siguiente acercamiento previsto de un objeto con un diámetro mayor o igual a éste tendrá lugar cuando el asteroide 1999 AN10, de 800 metros de diámetro, se aproxime a una distancia lunar en agosto de este año.

El asteroide 2014 JO25 estará cerca del Sol hasta el próximo 19 de abril, momento en que se encontrará en una situación favorable para las observaciones y, a partir de entonces, se convertirá en uno de los principales objetivos del radar de asteroides durante este año. Debido a su cercanía al Sol, no se espera conocer su periodo de rotación antes de las observaciones del radar.

Los astrónomos calculan que este asteroide no se ha aproximado tanto a la Tierra desde hace, al menos, 400 años. Y no hay conocimiento de futuras aproximaciones tan cercanas como ésta hasta el año 2500.

A pesar de haber sido clasificado como un “Asteroide Potencialmente Peligroso” por el Minor Planet Center, no hay motivos para la alarma porque no hay riesgo de choque con la Tierra. Y es que este centro estadounidense califica bajo este nombre a todos los cometas o asteroides cercanos a la Tierra con una órbita tal que tiene potencial para acercarse a ésta y un tamaño suficiente como para causar daños significativos en caso de impacto. Además, se considera que los asteroides pertenecientes a esta lista no suponen una amenaza para la Tierra en los próximos 100 años o más. La última actualización de esta lista, en marzo de 2017, incluye a 1.786 asteroides.

Un caparazón gigantesco cubrió la Tierra antes de que se formaran los continentes


ABC.es

  • Probablemente, un cascarón cubría toda la superficie antes de que hubiera tectónica de placas
Las placas tectónicas, en la actualidad - USGS

Las placas tectónicas, en la actualidad – USGS

En la actualidad, los continentes de la Tierra están a la deriva sobre las placas tectónicas, unos bloques inmensos y perezosos que se deslizan lentamente por el globo. Su movimiento genera terremotos y cordilleras, amplía la extensión de los fondos marinos y permite el nacimiento de volcanes. Pero desde hace muchos años los geólogos se preguntan cómo empezó todo. Si desde que la Tierra nació estuvo recorrida por placas, o si hubo un periodo de calma en el que la superficie era más rígida que hoy.

Es difícil obtener una respuesta clara 4.500 millones de años después de la formación del planeta. Pero los geólogos han podido estudiar en Australia algunas de las rocas más antiguas que existen, con una edad de 3.500 millones de años, para tratar de encontrar pistas sobre qué ocurrió en los orígenes. En un artículo publicado en Nature este lunes, los científicos han concluido que, probablemente, al principio no había placas tectónicas. En primer lugar se formó un caparazón rígido que cubrió todo el planeta, pero después este se fragmentó y permitió el nacimiento de la tectónica.

«Nuestra investigación apoya la hipótesis de que la corteza continental se formó a partir de un “techo inactivo” al comienzo de la historia de la Tierra», ha explicado en un comunicado Michael Brown, profesor de geología en la Universidad de Maryland (Estados Unidos) y coautor del estudio.

Esta investigación no cierra el interrogante sobre los orígenes de la tectónica de placas, pero refuerza la hipótesis de que hubo un gran escudo de corteza cubriendo todo el planeta.

Para llegar a esas conclusiones, los investigadores fueron al cratón de Pilbara, uno de los dos lugares del mundo donde se pueden encontrar las rocas más antiguas. La región se encuentra al noroeste de Australia, y junto al cratón de Kaapvaal, permite obtener muestras de rocas que pertenecen al eón Arcaico, con una antigüedad de hasta 3.600 millones de años.

Allí recogieron unos granitos que pueden servir como un registro de la actividad tectónica, porque se suelen formar en arcos volcánicos, unos alineamientos de volcanes que se forman en los límites de las placas tectónicas. Además, analizaron unos basaltos de la formación de Coucal, junto al cratón de Pilbara. Estas rocas se forman en las erupciones de los volcanes y en los suelos oceánicos, que son a su vez las regiones donde la corteza de la Tierra crece bajo el océano gracias a la actividad de las dorsales oceánicas.

El motivo por el que estudiaron ambos tipos de rocas es que se suele considerar que ambos tipos de rocas están relacionados, y que se generan a causa de la tectónica de placas. Pero Brown y su equipo trataron de encontrar alguna explicación alternativa, para así sugerir la posibilidad de que en una etapa temprana de la vida del planeta no hubiera actividad tectónica.

Los investigadores analizaron los basaltos, y averiguaron cómo se comportarían a unas temperaturas y presiones muy elevadas, teniendo en cuenta su composición química. Gracias a esto, averiguaron que los granitos de Pilbara podrían haberse formado perfectamente a partir de los basaltos de Coucal, en un escenario donde en vez de placas, la Tierra completa hubiera estado cubierta por un caparazón de roca.

En ese escenario, la corteza habría estado muy caliente y a baja presión a pocas profundidades. Pues bien, al analizar los granitos y los basaltos, los científicos observaron que ambos parecían haberse formado justo bajo esas condiciones.

Por eso, han concluido que los granitos de Pilbara se formaron tras la fusión de los basaltos de Coucal en un entorno donde la temperatura aumentaba mucho con pocas diferencias de profundidad. Por eso, Brown y su equipo han concluido que los primeros continentes se formaron después de que se fracturase una gran coraza global de corteza.

Mañana la Tierra alcanzará su velocidad máxima


ABC.es

  • Nuestro planeta se sitúa en su punto más cercano al Sol y se moverá 7.000 kilómetros por hora más rápido
  • El Sol presentará su máximo diámetro aparente visto desde la Tierra

fotoliasol-kbz-620x349abc

A principios de año, la Tierra pasa por el punto de su órbita más cercano al Sol, conocido como perihelio. Este año este acontecimiento tendrá lugar mañana, día 4 de enero, a las 11:59 hora peninsular (10:59 Tiempo Universal). La Tierra y el Sol distarán entonces 147,1 millones de kilómetros, unos cinco millones menos que en su posición más alejada, que tiene lugar a principios de julio y se denomina afelio.

Esta “cercanía” al Sol tiene varias consecuencias. Por un lado, el Sol presentará su máximo diámetro aparente visto desde la Tierra. Y, por otro, la Tierraalcanzará la máxima velocidad en su órbita. Concretamente se desplazará a 30,75 kilómetros por segundo (110.700 kilómetros a la hora). Dos kilómetros por segundo más más rápido que en el punto de su órbita más alejado del sol, lo que equivale a 7.164 kilómetros por hora más rápido. Como media, la Tierra se mueve a 107.280 kilómetros por hora.

El primero en darse cuenta de este fenómeno fue el matemático y astrónomo alemán Johannes Kepler. Gracias a las notas de uno de sus maestros, el astrónomo danés Tycho Brahe, el observador más importante del cielo antes de la invención del telescopio, Kepler se dio cuenta de que la órbita que describe la Tierra alrededor del sol no es circular, sino ligeramente elíptica. Esto le llevó a definir la que hoy se conoce como primera ley de Kepler: “Los planetas describen órbitas elípticas alrededor del Sol, que ocupa uno de los focos de la elipse”.

También había observado que la velocidad de la tierra al recorrer su órbita varia. Y lo plasmó en la segunda ley de Kepler: “Cada planeta se mueve de tal manera que la recta imaginaria que le une al centro del Sol (denominada radio vector) barre áreas iguales en tiempos iguales”. El planeta, cuando está más cerca del sol, debe recorrer una distancia mayor y su velocidad aumenta. Durante todo el invierno en el hemisferio norte (verano en el sur), cuando la Tierra y el Sol están más próximos, la velocidad a la que viaja nuestro planeta es mayor. Y el máximo se produce durante el perihelio.

Aunque Kepler enunció las leyes de los movimientos de los planetas, desconocía qué fuerza los obligaba a cumplirlas. Newton, basándose en las observaciones Tycho Brahe, Galileo y Kepler, dio con la causa: la gravedad. Y es su segunda ley la que explica por qué la tierra va a hora más rápido: “La fuerza de atracción entre dos cuerpos de masas separados una distancia r es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia“. Es decir, cuanto menor sea la distancia al Sol, mayor será la fuerza de gravedad y por tanto la velocidad a la que se desplaza un planeta.

¿Por qué hay estaciones?

¿Y si estamos más cerca del Sol, por qué es invierno? Dos cosas determinan la cantidad de calor del sol que recibe un planeta. La excentricidad de su órbita y la inclinación de su eje. La excentricidad define cuánto se aparta la órbita de un circulo. La Tierra sigue una órbita casi circular, así que las estaciones vienen determinadas exclusivamente por la inclinación de su eje, que a su vez determina la inclinación con que los rayos solares llegan a la Tierra.

El eje de rotación de nuestro planeta está inclinado unos 23,5 grados con respecto a la perpendicular del plano de la órbita que describe alrededor del Sol (plano de la eclíptica). Cuanto más perpendiculares incidan los rayos del Sol, menor será el calor que se disipe al atravesar la atmósfera terrestre y será la estación más cálida. En los meses próximos el perihelio (de diciembre a marzo), es el hemisferio Sur el que está inclinado hacia el Sol y allí será verano, mientras en el Norte será invierno.

Para que luego digan que la Física no tiene aplicaciones prácticas…

Descubren el fósil de uno de los seres vivos más antiguos de la Tierra


ABC.es

  • Es el resto más primitivo de una bacteria oxidadora del azufre, un grupo que vivió antes de que hubiera oxígeno en la atmósfera
  • Son los organismos conocidos más antiguos que vivieron en aguas oscuras y profundas. Existieron hace 2.500 millones de años, mucho antes de que aparecieran las plantas y los árboles
 Estas bacterias eran grandes, esféricas y con un aspecto diferente al de las bacterias actuales - Andrew Czaja

Estas bacterias eran grandes, esféricas y con un aspecto diferente al de las bacterias actuales – Andrew Czaja

Hace unos 2.500 millones en la Tierra ocurrió un evento que cambió para siempre la vida en el planeta. Con la llamada «Crisis del Oxígeno», el que era un gas residual generado por microorganismos fotosintéticos acabó provocando una extinción masiva de especies al acumularse en la atmósfera, puesto que era un elemento tóxico para muchos seres vivos. Esto fue el fin para la mayoría, pero también fue la oportunidad para que otros seres capaces de aprovechar el oxígeno dominaran la Tierra.

De aquella tragedia quedan testigos mudos en forma de rocas. Son sobre todo los llamados estromatolitos, unas formaciones fosilizadas creadas por el crecimiento en capas de microorganismos que vivieron hace más de 3.500 millones de años. Pues bien, desde este martes, un estudio publicado en la revista «Geology» asegura haber encontrado los restos de unas bacterias que vivieron en la Tierra justo antes de que ocurriera la «Crisis del Oxígeno», tal como ha informado Phys.org.

«Estos son los fósiles más antiguos de bacterias del azufre (usan este elemento como fuente de energía)», ha dicho Andrew Czaja, profesor de geología en la Universidad de Cincinnati y primer autor del estudio. «Y este descubrimiento nos ayuda a entender la diversidad de formas de vida y de ecosistemas que existieron justo antes del “Gran Evento de Oxidación”».

Según Czaja, estas bacterias eran grandes, esféricas y con un aspecto diferente al de las bacterias actuales, pero similar al de organismos unicelulares que viven hoy en día en aguas profundas, ricas en azufre y pobres en oxígeno. Al parecer, fueron abundantes en las aguas profundas de los océanos hace entre 2.500 o 2.8oo millones de años.

Según creen los investigadores, se dedicaban a alimentarse de sulfuro de hidrógeno, una molécula que huele a huevo podrido. Eran capaces de robarles los electrones a esta molécula (a través de una oxidación) para obtener su energía, y en el proceso transformaban esos compuestos en sulfato (un gas que no huele a nada). Tal como ha dicho este investigador, además había otras bacterias que eran capaces de respirar este sulfato (se trata de las bacterias sulfatorreductoras). «El residuo de una era la comida para otra».

Hoy en día hay bacterias capaces de hacer reacciones químicas similares a aquellas en un «puñado» de lugares en los que no hay presencia de oxígeno, como pueden por ejemplo ser los sedimentos de algunas masas de agua o lugares donde se ha consumido temporalmente el oxígeno del agua.

Aprovechar la «comida» de los volcanes

«Aunque no puedo decir que estas bacterias primitivas fueran las mismas que las que hay hoy en día, tengo la conjetura de que hacían lo mismo que las bacterias actuales», ha opinado. «Estas bacterias tempranas probablemente consumían las moléculas que procedían de la disolución de minerales ricos en azufre que había en los océanos y que procedían de rocas erosionadas y lavadas de Tierra, o de restos volcánicos en los fondos».

Este tipo de procesos, entre otros, son los que hoy se consideran como un factor clave para poder encontrar vida en otros lugares del Sistema Solar en los que hay grandes masas de agua bajo la superficie, como es el caso de Europa, la luna de Júpiter, o Encélado, el satélite de Saturno.

Fósiles extremadamente antiguos

Estas bacterias del azufre primitivas fueron encontradas en las láminas de rocas de silicatos situadas en una región muy especial: el Cratón de Kaapvaal, una zona donde la corteza terrestre tiene 3.500 millones de años de antigüedad.

Según este estudio, estos fósiles se formaron en el lecho marino profundo que había en el supercontinente de Vaalbara, una antigua placa de la que hoy pueden encontrarse restos en el Sur de África y en Australia Occidental. Gracias la datación por radiometría y a análisis de isótopos, Czaja y su equipo concluyeron que estas bacterias del azufre vivieron al mismo tiempo que en la superficie otros microbios comenzaban a producir cantidades cada vez más exageradas de oxígeno a través de la fotosíntesis.

«Esos fósiles representan los organismos conocidos más antiguos que vivieron en aguas muy oscuras y profundas», ha añadido. «Existieron 2.000 millones de años antes que las plantas y los árboles, que evolucionaron hace 450 millones de años». Los científicos aún no se han puesto de acuerdo en relación con el momento en que aparecieron por primera vez las bacterias oxidadores del azufre, pero Czaja cree que definitivamente estos microbios estaban aquí hace 2.500 millones de años y que estaban haciendo algo importante.

El segundo gran impacto que formó la Luna


ABC.es

  • La cara oculta podría haber sido modelada por la colisión con un segundo satélite de la Tierra

cara-oculta-luna-kv3-620x349abc

La cara oculta de la Luna podría haber sido modelada por la colisión con un segundo satélite de la Tierra, según acaba de revelar un estudio realizado por investigadores de la Universidad de California en Santa Cruz. Y eso podría explicar las sorprendentes diferencias entre las caras visible y oculta de la Luna, un misterio cuya solución se ha resistido durante décadas a los intentos de explicación de los científicos. La cara vista es, en efecto, notablemente plana, mientras que la oculta, con una corteza mucho más gruesa, está llena de colinas y montañas.

Ningún ser humano ha visitado aún la cara oculta de nuestro satélite. Allí, sin embargo, cerca del Polo Sur lunar, se encuentra la segunda mayor estructura de impacto de todo el Sistema Solar, solo superada por cuenca Borealis, de Marte. Se trata de la cuenca Aitken, con casi 2.500 km. de ancho y 13 km. de profundidad.

El nuevo estudio se basa en el modelo de “Impacto gigante” para el origen de la Luna, según el cual un objeto del tamaño del planeta Marte chocó contra la Tierra en algún momento de la juventud del Sistema Solar. La enorme cantidad de escombros y rocas lanzados al espacio por el colosal impacto terminaron uniéndose para formar la Luna. El estudio, sin embargo, sugiere que el mismo impacto contra la Tierra tambièn creó un segundo satélite, más pequeño, que al principio compartió órbita con la Luna, pero que terminó cayendo sobre ella y proporcionando así a una de sus caras una capa “extra” de corteza sólida de varias decenas de km. de grosor.

“Nuestro modelo -explica Erik Asphaugh, profesor de Ciencias Planetarias de la Universidad de California en Santa Cruz- funciona muy bien junto a los modelos de la formación de la Luna debido a un gran impacto, que predicen que tras la colisión debió de haber una cantidad realmente masiva de escombros alrededor de la Tierra, y más tarde alrededor de la Luna recién formada. Eso concuerda con lo que sabemos sobre la estabilidad dinámica de un sistema de esas características, sobre el tiempo que tardó la Luna en formarse y sobre la edad de las propias rocas lunares”.

Aspaugh, que junto a Martin Jutzi ya había realizado simulaciones informáticas sobre cómo pudo formarse la Luna tras la gigantesca colisión, afirma que la formación de otras “lunas compañeras” es un resultado bastante común de muchas de las simulaciones.

Lenta y sin cráter

En el estudio, Asphaug y Jutzi rizaron el rizo y utilizaron simulaciones del impacto de la Luna ya formada con un segundo satélite más pequeño (con cerca de un tercio de su masa) para estudiar la dinámica de esa colisión y rastrear la evolución y distribución del material lunar tras la catástrofe. El resultado fue que en las colisiones a baja velocidad, el impacto entre los dos satélites no llega a formar un cráter y tampoco hace que se funda una gran cantidad de roca. Sencillamente, la mayor parte del material impactante se acumula sobre el hemisferio que recibe la colisión y se convierte en una nueva capa de roca sólida, formando una región montañosa comparable en extensión con las elevaciones que realmente existen en la cara oculta de la Luna.

“Por supuesto -puntualiza Asphaug- los modeladores de impactos tratan de explicarlo todo con colisiones. Pero en este caso se requiere una colisión muy extraña: lenta, que no forme un cráter y que acumule todo el material en una sola cara. Y eso es algo nuevo en lo que pensar”.

La hipótesis de los investigadores es que la segunda luna quedó atrapada, al principio, en uno de los puntos Lagrange (en los que las gravedades de ambos cuerpos se equilibran) del sistema, pudiendo compartir así la órbita lunar durante un tiempo. Después, al alejarse la órbita lunar de la Tierra, el delicado equilibrio gravitatorio se rompió y las dos lunas chocaron.

“La colisión -afirma Jutzi- pudo haberse producido en cualquier lugar de la Luna. El cuerpo resultante estaba desequilibrado y tuvo que reorientarse de modo que una sola cara apunta siempre hacia la Tierra”.

El modelo explica también las variaciones que existen en la composición de la corteza lunar. En la cara vista, predomina un tipo de terreno relativamente rico en potasio, tierras raras y fósforo. Todos ellos, así como el torio y el uranio, debieron de concentrarse en el océano de magma que se mantuvo como roca fundida y que finalmente se solidificó bajo la gruesa corteza lunar.

En las simulaciones, la colisión aplasta, literalmente esta capa rica en potasio y fósforo en el hemisferio opuesto, preparando el escenario para el tipo de geología que hoy predomina en el lado más cercano de la Luna.

La increíble odisea que llevó al hombre a conquistar el mundo


ABC.es

  • Un extenso y detallado retrato de genes humanos de poblaciones normalmente no estudiadas ha permitido averiguar mucho más acerca de cómo el humano logró extenderse por todos los continentes desde África
  • Además ha permitido averiguar cómo los cambios climáticos del pasado se convirtieron en motor de las migraciones
 Dos grandes teorías enfrentadas reconstruyen el pasado del hombre. Una dice que una gran oleada salió de África, la otra sostiene que hubo varias - NATURE

Dos grandes teorías enfrentadas reconstruyen el pasado del hombre. Una dice que una gran oleada salió de África, la otra sostiene que hubo varias – NATURE

La historia recuerda que el viaje está grabado en los genes. La prueba es que hace decenas de miles de años los hombres abandonaron su hogar, en África, y caminaron por todos los continentes de la Tierra, sin detenerse jamás ante los glaciares, los desiertos, las montañas, o los océanos. Aquel apasionante viaje llevó a los humanos adonde están hoy, pero en muchos casos el fracaso hizo desaparecer pueblos enteros y solo dejó un triste testimonio de huesos.

Pero gracias a los avances que se están produciendo en las técnicas de secuenciación de genomas, los científicos pueden acceder cada vez mejor a las historias que quedaron grabadas en la biología del ser humano. Esto ha llevado a que este miércoles se hayan publicado cuatro artículos en la prestigiosa revista Nature en los que se trata de recordar cómo ocurrió aquello.

«Estos estudios llenan algunos huecos del puzzle de la historia humana», han escrito Serena Tucci y Joshua M. Akey en un artículo de análisis de las investigaciones presentadas en Nature. Gracias a un trabajo muy extenso con 270 poblaciones de todo el mundo, incluyendo a algunas que normalmente no han sido muy estudiadas, la diversidad genética de los grupos ha permitido descubrir nuevas cosas sobre el pasado del hombre.

Esto es importante, porque los científicos están sumidos actualmente en un intenso debate. Unos sostienen que hace unos 40.000-80.000 años los africanos dejaron atrás el continente y que desde allí se extendieron por el resto del mundo. Pero otros creen que hubo varias oleadas de migración: una primera, hace 120.000-130.000 años, que les permitió llegar a Asia y Australasia, caminando a través de la Península Arábiga y la India, y una segunda, que les permitió llegar a Europa y al Mediterráneo oriental más tarde.

Algunos investigadores creen que hubo al menos dos grandes migraciones desde África- NATURE

Algunos investigadores creen que hubo al menos dos grandes migraciones desde África- NATURE

El hecho de que un modelo y no otro sea el más cercano a la realidad, al final implica encontrar una explicación a cómo se mezclaron los genes humanos con sus parientes cercanos, los neandertales y los denisovanos. También permitiría entender si, efectivamente, los aborígenes australianos se separaron de los africanos antes que los pobladores de Eurasia, lo que significaría que estos tienen un origen más antiguo que el resto.

Además, uno y otro modelo de migraciones podrían ayudar a entender por qué la variabilidad genética de los humanos de algunas regiones fue menor a la de otros lugares (lo que es muy importante en el proceso de la evolución), o si hay algunos hombres actuales que representan mejor a sus ancestros que otros.

Los cuatro estudios presentados en Nature han hecho su pequeña contribución a la historia del hombre. La investigación dirigida por David Reich ha secuenciado el genoma de 300 personas de 142 poblaciones normalmente no muy estudiadas en estudios de variación humana. Han apoyado la idea de que hubo una gran oleada migratoria desde África, y que la población que dio lugar a los humanos de hoy en día dejó el continente hace unos 200.000 años. Además, sostienen que desde entonces la tasa de mutación auementó en un 5 por ciento entre los no africanos.

Por su parte, el equipo de Eske Willerslev ha secuenciado los genomas de 83 aborígenes australianos y de 25 personas de las tierras altas de Papúa Nueva Guinea. Esto, que de por sí solo ya les ha permitido convertirse en el estudio más importante de los genomas de esta poblaciones australianas, sugiere que los aborígenes ocuparon el continente durante mucho tiempo. Y que sus orígenes son más antiguos que los de los demás pobladores actuales.

La investigación de Luca Pagani y Mait Metspalu, estudió 379 genomas de 125 poblaciones, sobre todo europeas, y descubrió que al menos el 2 por ciento de los genes de los papuanos modernos proviene de un ancestro que se separó de África antes que los euroasiáticos. Esto apoya la idea de que hubo varias oleadas de humanos saliendo de África, y la antigua procedencia de los aborígenes.

El papel de los cambios climáticos

Además, una investigación dirigida por Axel Timmermann y Tobias Friedrich ha establecido un vínculo directo entre varios cambios climáticos pasados y un conjunto de oleadas migratorias que salieron de África hace unos 125.000 años (por lo que apoyan también la idea de que hubo varias migraciones). Según su modelo, varias glaciaciones provocaron migraciones a través de la península arábiga y el Mediterráneo oriental. Además, su trabajo apoya la idea de que el humano llegó al mismo tiempo al sur de China y a Europa, hace unos 80.000 años.

Tal como ha aclarado esta investigación, aunque no resulta sencillo relacionar el clima pasado con el humano pretérito, hay casos en los que este vínculo es claro. Por ejemplo, hace unos 12.000-5.000 años el actual desierto del Sáhara estaba cubierto de vegetación, bosques, lagos y ríos. Por eso en la región se han encontrado restos de actividad humana hasta hace unos 5.000 años, momento en el que los cambios en la órbita de la Tierra trastocaron el régimen de lluvias de la zona.

Parece claro que los genes son poderosas herramientas para acercarse al pasado del hombre. Pero tienen sus límites. No se puede olvidar la complejidad de la historia humana, reflejada en la diversidad de lenguas, restos arqueológicos y linajes genéticos encontrados hoy en día. Solo una ciencia armada con muchas disciplinas, como la arqueología, la antropología, la genética y la climatología, puede tratar de entender el pasado del hombre. Ese gran viajero que caminó por todos los continentes.