Category: Espacio



ABC.es

  • Situado en el centro de un cúmulo, tiene una masa de 2.200 soles y puede ser el primero de tamaño intermedio descubierto
 Los agujeros negros de tamaño medio tienen una masa entre 100 y 10.000 soles - CfA / M. Weiss

Los agujeros negros de tamaño medio tienen una masa entre 100 y 10.000 soles – CfA / M. Weiss

El tamaño importa. Al menos en el caso de los agujeros negros, uno de los objetos más extraños y fascinantes de todo el Universo. Desde hace tiempo se conocen dos tipos extremos de estos devoradores de materia: los pequeños, que tienen el peso de varios soles; y los supermasivos, unos gigantes inconmensurables con la masa de millones o miles de millones de soles que suelen estar situados en el centro de las galaxias. Pero los astrónomos llevan mucho tiempo barruntando la existencia de una tercera categoría, una intermedia, con una masa de entre 100 y 10.000 soles. Quizás ya tengan la respuesta. Un equipo del Centro Harvard-Smithsoniano de Astrofísica (CfA) ha encontrado pruebas de un agujero negro de tamaño mediano, con una masa de 2.200 soles, que se esconde en el centro de un cúmulo globular llamado 47 Tucanae, a 13.000 años luz de la Tierra.

¿Y qué tiene esto de particular? «Queremos encontrar agujeros negros de masa intermedia porque son el ‘eslabón perdido’ entre los de masa estelar y los supermasivos. Pueden ser las semillas primordiales que se convirtieron en los monstruos que vemos hoy en los centros de las galaxias», explica Bulent Kiziltan, autor principal del estudio.

La caza de este tipo de agujeros ha estado llena de contradicciones y sinsabores. En 2005, los astrónomos creyeron detectar uno intermedio en un cúmulo de la galaxia vecina Andrómeda, pero modelos alternativos demostraron que los datos podían ser explicados sin ese objeto. En 2014, el candidato M82 X-2 resultó no ser un agujero negro, sino una estrella de neutrones. Y otros propuestos tenía una masa demasiado pequeña. En resumen, que ese «eslabón perdido» seguía perdido.

Así que los astrónomos de Harvard se fijaron en 47 Tucanae, un cúmulo globular de 12.000 millones de años que se encuentra en la constelación austral de Tucana, el tucán. Denso y poblado, contiene miles de estrellas y dos docenas de púlsares en un globo de solamente 120 años luz de diámetro.

En realidad, no es la primera vez que este cúmulo es examinado en busca de un agujero negro central, pero los intentos anteriores no tuvieron éxito. En la mayoría de los casos, estas regiones del espacio se encuentran por la pista de los rayos X procedentes de un disco de material caliente que gira alrededor de ellas. Pero este método sólo funciona si el agujero se está alimentando activamente del gas cercano. El centro de 47 Tucanae no tiene gas, dejando hambriento a cualquier agujero negro que pueda estar al acecho allí.

El agujero negro supermasivo en el centro de la Vía Láctea también revela su presencia por su influencia en las estrellas cercanas. Años de observaciones infrarrojas han mostrado un puñado de estrellas en nuestro centro galáctico girando alrededor de un objeto invisible con un fuerte tirón gravitacional. Pero el concurrido centro de 47 Tucanae hace que sea imposible ver los movimientos de las estrellas individuales.

Estrellas disparadas

Así que, en este caso, los investigadores tuvieron que arreglárselas y buscar otras evidencias. La primera fueron los movimientos de estrellas de todo el cluster. El ambiente de un cúmulo globular es tan denso que las estrellas más pesadas tienden a caer hacia el centro de la agrupación. Un agujero negro de tamaño mediano en el centro del cúmulo actúa como una «cuchara» cósmica y revuelve la olla, causando que esas estrellas sean catapultadas a velocidades más altas y mayores distancias. Esto imparte una señal sutil que los astrónomos sí pueden medir.

En efecto, mediante el empleo de simulaciones por ordenador de movimientos estelares y distancias, y comparándolas con las observaciones en luz visible, el equipo encontró que un agujero negro intermedio era la única explicación para semejante agitación gravitacional.

Los púlsares, restos compactos de estrellas muertas cuyas señales de radio son fácilmente detectables, también pusieron sobre aviso a los investigadores. Estos objetos también son impulsados por la gravedad del agujero central, haciendo que se encuentren a una mayor distancia del centro del cúmulo de lo que se esperaría si no existiera ningún agujero negro.

En conjunto, para los astrónomos estas pistas sugieren la presencia de un agujero negro de alrededor de 2.200 masas solares dentro de 47 Tucanae. Como este agujero ha eludido ser detectado durante tanto tiempo, los astrónomos creen posible que existan otros parecidos escondidos en otros cúmulos globulares. Habrá que continuar la búsqueda.


El Mundo

Vista del cráter Gale NASA

Vista del cráter Gale NASA

Marte es en la actualidad un planeta extremadamente seco y frío, con un ambiente extraordinariamente inhóspito para la vida como la conocemos en la Tierra. Los científicos saben, sin embargo, que en el pasado tuvo agua y un clima diferente al actual. Continuando con el trabajo que iniciaron otros vehículo robóticos, el rover de la NASA Curiosity está buscando desde agosto de 2012 pruebas que ayuden a reconstruir cómo era el planeta rojo en el pasado.

Un estudio publicado en la revista PNAS ofrece algunas pistas que permiten trazar un retrato de cómo pudo haber sido ese Marte primitivo basándose en la escasísima cantidad de dióxido de carbono (C02) que el rover halló al analizar sedimentos de aquella época en el cráter Gale, una de las zonas que está explorando. Según propone este equipo de investigadores, en el que participa el español Alberto G. Fairén, del Centro de Astrobiología (CAB/CSIC-INTA), hace 3.500 millones de años esa zona de Marte habría albergado un lago glaciar rodeado por enormes masas de hielo. Un entorno que recordaría al del Ártico terrestre.

Los sedimentos que ha analizado el rover contienen minerales, como arcillas o sulfatos, que sugieren que, en el pasado, esa superficie estuvo en contacto con agua líquida. Un dato, en principio, incompatible con la escasa cantidad de CO2 detectado. Y es que los científicos creían que para que hubiera agua líquida, habría sido necesaria una determinada temperatura, que es propiciada a su vez por un mínimo de CO2 en la atmósfera, ya que este gas genera un efecto invernadero y calienta el planeta.

Según relata Fairén a EL MUNDO, los modelos climáticos que simulan la atmósfera primitiva de Marte mostraban que hace falta cerca de un bar de CO2 para poder tener agua líquida en Marte hace 3500 millones de años. “Sin embargo, las investigaciones de Curiosity confirman que, en realidad, había tan sólo entre 10 y 100 veces menos de esa cantidad mínima. Es decir, entonces había unas decenas o tal vez unos pocos cientos de milibares de CO2. Esto es mucho más que ahora, que sólo hay 6 milibares, pero insuficiente para calentar el planeta. Los modelos nos dicen que harían falta al menos alrededor de mil milibares para generar un efecto invernadero suficiente”, detalla.

“Con el poco CO2 que ha encontrado en los sedimentos de Gale, los modelos atmosféricos predicen temperaturas medias por debajo de -50C. Pero algo se nos escapa, porque Curiosity ha descubierto en esos mismos sedimentos evidencias geomorfológicas de lagos duraderos, deltas y torrenteras bajo un clima no muy frío hace 3.500 millones de años. Esta es la contradicción que plantea el artículo, y que en este momento no sabemos resolver. Una alternativa es que fuera un lago glaciar, en un ambiente muy frío, como los polos de la Tierra hoy. Esta posibilidad está siendo considerada seriamente, pero no tenemos una respuesta final todavía”, admite Fairén, que espera poder responder a esa cuestión con más investigación en el futuro. “Por eso precisamente es un gran avance. La ciencia es una serie de preguntas, no un catálogo de respuestas”, argumenta.

Curiosity es un laboratorio andante así que las muestras que recoge, las procesa in situ, antes de enviar los resultados a la NASA. Para hacer esta investigación, tomó rocas de la superficie y de hasta cinco centímetros de profundidad, que es el máximo que puede perforar. “A partir de ahí, los investigadores analizamos los datos, y los utilizamos para generar modelos que puedan que puedan responder preguntas”, dice Fairén, que investigó durante seis años en la NASA.

Cómo y por qué cambió tanto el planeta rojo sigue siendo una incógnita: “Es posible que Marte tuviera más CO2 en su atmósfera hace entre 3.500 y 4.200 millones de años. En aquel tiempo, habría sido más sencillo que el planeta tuviera agua líquida en la superficie. Hoy está absolutamente seco y es muy frío. Es muy interesante que Curiosity esté estudiando los sedimentos de un lago que existió en Gale justamente en la época de transición entre el Marte húmedo y el Marte seco”, añade. Según recuerda, el robot descubrió hace dos años que Marte ya había perdido la mitad de su agua y gran parte de su atmósfera hace 3.500 millones de años, cuando se formó el lago de Gale, por lo que considera que sus investigaciones pueden “proporcionar muchísima información acerca de la evolución climática de Marte y de cómo, cuándo y porqué perdió su agua y su atmósfera”.

¿Pudo haber formas de vida extremas en ese escenario de hielo? “La vida en la Tierra ocupa casi todos los rincones del planeta, incluyendo las zonas polares. Por lo tanto, si en Gale había un lago glaciar, el entorno no habría sido un impedimento para la vida. De hecho, si en algún momento hubo vida en Marte y apareció, como en la Tierra, muy al principio de la historia geológica del planeta, solamente habría tenido que adaptarse al entorno glaciar”.


ABC.es

  • Se trata de un mundo a solo 14 años luz de la Tierra y que está dentro de la «zona de habitabilidad»
 La ilustración muestra el aspecto de este nuevo planeta extrasolar - NASA/Ames/JPL-Caltech

La ilustración muestra el aspecto de este nuevo planeta extrasolar – NASA/Ames/JPL-Caltech

Stephen Kane, astrofísico de la Universidad Estatal de San Francisco y uno de los más conocidos “cazadores” de planetas extrasolares, acaba de dar un paso decisivo en la búsqueda de vida fuera de la Tierra. Así, y en lugar de seguir buscando más mundos potencialmente habitables, Kane ha decidido dedicarse a localizar “zonas habitables” en la superficie de los planetas que ya conocemos. Entendiendo por zonas habitables aquellas en las que el agua podría existir en estado líquido. El estudio se publicará en el próximo número de Astrophysical Journal.

Para empezar, Kane y su equipo han examinado a fondo las posibles zonas habitables de Wolf 1061, un sistema planetario que se encuentra sólo a 14 años luz de distancia, uno de los más próximos a la Tierra. “Este sistema, afirma Kane- es importante porque está tan cerca que nos brinda la oportunidad de llevar a cabo otro tipo de estudios y seguimientos para comprobar si, efectivamente, alberga vida”.

Por supuesto, no es solo su proximidad a la Tierra lo que hace tan atractivo a Wolf 1061. De hecho, uno de sus tres planetas conocidos, un mundo rocoso llamado Wolf 1061c, se encuentra dentro de la “zona de habitabilidad” de su estrella, es decir, a la distancia exacta de ella para que las temperaturas permitan la existencia de agua en estado líquido sobre la superficie.

Kane y su equipo contaron con la ayuda de expertos de la Universidad Estatal de Tennessee y de Ginebra para estudiar a fondo el planeta y hacerse una idea más clara de si realmente la vida podría existir allí.

Cuando los científicos tratan de localizar mundos capaces de sustentar vida, lo que buscan es, básicamente, planetas que tengan propiedades similares a las de la Tierra. Es decir, que sean rocosos y que se encuentren en la “zona habitable” de sus estrellas, ni demasiado lejos ni demasiado cerca de ellas, ya que en el primer caso el agua se congelaría, como sucedió en Marte, y en el segundo se evaporaría, como le ocurrió a Venus.

Puesto que Wolf 1061c se encuentra cerca del borde interior de la zona hebitable (es decir, la más cercana a la estrella) Kane teme que su atmósfera se parezca más a la de Venus de lo que sería deseable. Pero los investigadores también se fijaron en que, a diferencia de la Tierra, que experimenta cambios climáticos (colo las edades de hielo) debido a las lentas variaciones en su órbita alrededor del Sol, la órbita de Wolf 1061c cambia a un ritmo mucho más rápido, lo que podría significar que su clima podría ser bastante caótico. “Podría ser -afirma Kane- que la frecuencia de congelación del planeta, o su calentamiento, se produjeran de forma rápida y brusca“.

Hallazgos que conducen a la gran pregunta: ¿Es posible la vida en Wolf 1061c?. Para Kane, existe la posibilidad de que las cortas escalas de tiempo entre los cambios orbitales sean suficientes para enfriar de forma efectiva el planeta, lo cual conlleva también una posibilidad de vida. Sin embargo, el investigador también afirma que para estar completamente seguros habrá que llevar a cabo nuevas investigaciones.

Durante los próximos años, la nueva generación de telescopios (como el James Webb, sucesor del Hubble), será capaz de detectar directemente los componentes atmosféricos de muchos exoplanetas, entre ellos la de Wolf 1061c. Y eso nos mostrará lo que realmente está sucediendo en sus superficies.


ABC.es

  • Las simulaciones de una investigación sugieren que algunas de las estrellas más lejanas son objetos que provienen de pequeñas galaxias satélite
 Representación artística de la Vía Láctea - NASA/WIKIPEDIA

Representación artística de la Vía Láctea – NASA/WIKIPEDIA

A pesar de su increíble brillo, la Vía Láctea tiene un pasado oscuro. Tal como ha concluido una investigación que recientemente ha sido aprobada para ser publicada en «Astrophysical Journal», todo apunta a que, entre sus 200.000 millones de estrellas, hay al menos 11 que no le pertenecen. En realidad, estas estrellas eran «propiedad» de algunas de las galaxias satélite que se mueven por las «cercanías» de la Vía Láctea.

Según Avi Loeb y Marion Dierickx, investigadores en el centro Harvard-Smithsonian para Astrofísica, al menos la mitad de ellas le fueron arrebatadas a la pequeña galaxia de Sagitario, tal como han explicado en un comunicado.

En concreto, estas estrellas «robadas» son las que parecen ser las once estrellas más lejanas de nuestra galaxia, situadas a una distancia de unos 300.000 años luz de la Tierra, y claramente fuera del disco de estrellas, polvo y gas de la Vía Láctea.

Los astrónomos usaron complejos modelos de ordenador para tratar de reconstruir el pasado y averiguar en qué punto la Vía Láctea se comportó como un vulgar ratero. Para ello, centraron sus pesquisas en Sagitario, una galaxia enana próxima a la Vía Láctea y que a lo largo de la vida del Universo ha girado varias veces en torno a ella.

Dierickx y Loeb simularon los movimientos de Sagitario durante 8.000 millones de años. Como si estuvieran jugando a predecir la órbita de un misil, introdujeron datos distintos sobre velocidades y trayectorias, y luego recogieron los resultados en forma de predicciones sobre el movimiento de las estrellas y de la materia oscura, esa porción invisible de la masa cuya naturaleza se desconoce pero que se cree que está ahí porque se observan los efectos de su gravedad.

Hemorragia galáctica

Los cálculos de Dierickx mostraron que al principio, Sagitario pesaba el uno por ciento de la Vía Láctea, pero que con el tiempo fue perdiendo la tercera parte de sus estrellas y el noventa por ciento de su materia oscura. Como si estuviera sufriendo una hemorragia, Sagitario iba perdiendo poco a poco la masa que le daba cohesión.

Según las simulaciones, esto puede producir tres posibles «rastros de sangre», es decir, largos brazos formados por estrellas en fuga de una galaxia a la otra. Si algo realmente grande y masivo estuviera tirando de una galaxia como Sagitario, la gravedad debería deshilacharla y crear brazos capaces de sumergirse en las profundidades del espacio.

Gracias a estas simulaciones, han hallado cinco estrellas cuya posición y velocidad coincide con lo predicho por estos modelos, en una situación en la que la Vía Láctea le robase estrellas a Sagitario. Otras seis, parecen ser haber sido robadas a otra pequeña galaxia.

A través del telescopio del «Sloan Digital Sky Survey» los astrónomos echaron un vistazo ahí arriba en busca de los brazos de estrellas predichos por sus modelos. Pero lo que vieron no coincidió con lo que esperaban encontrar.

«La corriente de estrellas que hemos mapeado hasta el momento es como un arroyo, en comparación con los ríos que esperábamos», ha dicho Marion Dierickx, primer autor del estudio. A pesar de ese escaso caudal, la longitud de esta corriente estelar es respetable. Si la Vía Láctea mide unos 100.000 años luz, esta «cola» alcanza una longitud diez veces mayor.

Estos investigadores esperan que gracias a los telescopios más potentes, como el «Large Synoptic Survey Telescope», podrán ver las estrellas que hay mucho más allá y entender cómo fue este robo galáctico.


ABC.es

  • Sucederá cuando dos estrellas se fundan en una sola y será perfectamente visible desde la Tierra, sin necesidad de utilizar telescopio alguno. Los autores del estudio hablan de «algo nunca visto hasta ahora»

nova-ka8d-620x349abc

Un equipo de astrónomos capitaneados por Larry Molnar han predicho que dentro de apenas cinco años, en 2022, se producirá una explosión que será perfectamente visible desde la Tierra, sin necesidad de utilizar telescopio alguno. «Estamos ante una de esas raras ocasiones (una de cada millón de veces) -explica Molnar- en las que podemos predecir una explosión. Será algo nunca visto hasta ahora».

Según la predicción de este científico, se trata de un sistema binario (dos estrellas que orbitan una alrededor de la otra) y que, según los cálculos, se fundirán en una sola en el año 2022, produciendo una explosión catastrófica. En ese momento, la estrella resultante aumentará espectacularmente su brillo y se convertirá, durante un tiempo, en el objeto más brillante del firmamento. La estrella será visible como parte de la constelación del Cisne, y añadirá un nuevo y brillante punto de luz a las estrellas que forman la Cruz del Norte.

Molnar comenzó a estudiar la estrella KIC 9832227 a finales de 2013. Empezó a hacerlo tras asistir a una conferencia en la que la astrónoma Karen Kinemuchi presentó un estudio sobre los cambios de brillo de esa estrella en particular, dejando abierta la cuestión de si se trataba de una estrella «pulsante» o de un sistema binario. El científico se tomó el asunto como un reto personal y decidió estudiar el objeto en profundidad.

Lo primero que hizo fue observar cómo el color de la estrella se relacionaba con su brillo, lo que le llevó a determinar que se trataba, definitivamente, de un sistema binario. De hecho, descubrió que en realidad se trataba de un sistema binario «de contacto», en el que las dos estrellas del sistema comparten una atmósfera común, como dos cacahuetes que están dentro de a misma cáscara.

A partir de aquí, Molnar explica cómo Daniel Van Noord, estudiante del Calvin College, «logró determinar un periodo orbital muy preciso con los datos del satélite Kepler, y se sorprendió al descubrir que ese periodo era ligeramente inferior al que mostraban los primeros datos del satélite».

Este resultado recordó al astrónomo un estudio publicado previamente por su colega Romuald Tylenda, que mostraba cómo otra estrella (V1309) se estaba comportando justo antes de explotar de forma inesperada en 2008, produciendo una nova roja, uno de los tipos conocidos de explosión estelar. Los registros anteriores a esa explosión mostraban una binaria de contacto, con un período orbital cada vez más corto y a velocidades cada vez mayores. Para Molnar, este patrón de cambios orbitales fue como una “piedra Roseta” que le permitió interpretar los nuevos datos de la estrella que estaba estudiando.

Tomada muy en serio

Molnar observó que los cambios en el período orbital de KIC 9832227 seguían cambiando durante 2013 y 2014, y en 2015 presentó sus resultados ante la Sociedad Astronómica Americana, donde aseguró que había una probabilidad muy alta de que KIC 9832227 siguiera los mismos pasos de V1309. Por supuesto, antes de tomarse su hipótesis completamente en serio, Molnar pasó meses enteros tratando de descartar otros motivos que podrían estar detrás de los cambios detectados en la estrella. «En pocas palabras -explica el investigador- en ese momento pensamos que nuestra hipótesis de la fusión de las dos estrellas debía ser tomada muy en serio, y que deberíamos utilizar los años siguientes para estudiar el acontecimiento a fondo para que, cuando la explosión se produzca, conozcamos con exactitud todos los pasos que llevaron a ella».

Por eso, Molnar y sus colegas pasarán todo el año próximo examinando KIC 9832227 en todas las longitudes de onda. Si las predicciones son correctas, será la primera vez que un grupo de astrónomos logra captar el momento en que los dos miembros de un sistema binario de estrellas se fusionan, y estudiar además al detalle lo que sucede durante los años que preceden a la explosión.

Si Molnar tiene razón. el espectáculo está servido para dentro de cinco años. Será entonces cuando, de la negrura del Universo, surgirá un nuevo punto brillante para iluminar nuestras noches.


ABC.es

  • Nuestro planeta se sitúa en su punto más cercano al Sol y se moverá 7.000 kilómetros por hora más rápido
  • El Sol presentará su máximo diámetro aparente visto desde la Tierra

fotoliasol-kbz-620x349abc

A principios de año, la Tierra pasa por el punto de su órbita más cercano al Sol, conocido como perihelio. Este año este acontecimiento tendrá lugar mañana, día 4 de enero, a las 11:59 hora peninsular (10:59 Tiempo Universal). La Tierra y el Sol distarán entonces 147,1 millones de kilómetros, unos cinco millones menos que en su posición más alejada, que tiene lugar a principios de julio y se denomina afelio.

Esta “cercanía” al Sol tiene varias consecuencias. Por un lado, el Sol presentará su máximo diámetro aparente visto desde la Tierra. Y, por otro, la Tierraalcanzará la máxima velocidad en su órbita. Concretamente se desplazará a 30,75 kilómetros por segundo (110.700 kilómetros a la hora). Dos kilómetros por segundo más más rápido que en el punto de su órbita más alejado del sol, lo que equivale a 7.164 kilómetros por hora más rápido. Como media, la Tierra se mueve a 107.280 kilómetros por hora.

El primero en darse cuenta de este fenómeno fue el matemático y astrónomo alemán Johannes Kepler. Gracias a las notas de uno de sus maestros, el astrónomo danés Tycho Brahe, el observador más importante del cielo antes de la invención del telescopio, Kepler se dio cuenta de que la órbita que describe la Tierra alrededor del sol no es circular, sino ligeramente elíptica. Esto le llevó a definir la que hoy se conoce como primera ley de Kepler: “Los planetas describen órbitas elípticas alrededor del Sol, que ocupa uno de los focos de la elipse”.

También había observado que la velocidad de la tierra al recorrer su órbita varia. Y lo plasmó en la segunda ley de Kepler: “Cada planeta se mueve de tal manera que la recta imaginaria que le une al centro del Sol (denominada radio vector) barre áreas iguales en tiempos iguales”. El planeta, cuando está más cerca del sol, debe recorrer una distancia mayor y su velocidad aumenta. Durante todo el invierno en el hemisferio norte (verano en el sur), cuando la Tierra y el Sol están más próximos, la velocidad a la que viaja nuestro planeta es mayor. Y el máximo se produce durante el perihelio.

Aunque Kepler enunció las leyes de los movimientos de los planetas, desconocía qué fuerza los obligaba a cumplirlas. Newton, basándose en las observaciones Tycho Brahe, Galileo y Kepler, dio con la causa: la gravedad. Y es su segunda ley la que explica por qué la tierra va a hora más rápido: “La fuerza de atracción entre dos cuerpos de masas separados una distancia r es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia“. Es decir, cuanto menor sea la distancia al Sol, mayor será la fuerza de gravedad y por tanto la velocidad a la que se desplaza un planeta.

¿Por qué hay estaciones?

¿Y si estamos más cerca del Sol, por qué es invierno? Dos cosas determinan la cantidad de calor del sol que recibe un planeta. La excentricidad de su órbita y la inclinación de su eje. La excentricidad define cuánto se aparta la órbita de un circulo. La Tierra sigue una órbita casi circular, así que las estaciones vienen determinadas exclusivamente por la inclinación de su eje, que a su vez determina la inclinación con que los rayos solares llegan a la Tierra.

El eje de rotación de nuestro planeta está inclinado unos 23,5 grados con respecto a la perpendicular del plano de la órbita que describe alrededor del Sol (plano de la eclíptica). Cuanto más perpendiculares incidan los rayos del Sol, menor será el calor que se disipe al atravesar la atmósfera terrestre y será la estación más cálida. En los meses próximos el perihelio (de diciembre a marzo), es el hemisferio Sur el que está inclinado hacia el Sol y allí será verano, mientras en el Norte será invierno.

Para que luego digan que la Física no tiene aplicaciones prácticas…


ABC.es

  • El depósito, situado en el hemisferio norte del Planeta rojo, podría servir para la supervivencia de futuras colonias humanas
 Las formas distintivas de la superficie de Utopia Planitia llevaron a los investigadores a comprobar si había hielo subterráneo - NASA / JPL-Caltech / Univ. de Arizona

Las formas distintivas de la superficie de Utopia Planitia llevaron a los investigadores a comprobar si había hielo subterráneo – NASA / JPL-Caltech / Univ. de Arizona

El Orbitador de Reconocimiento de Marte de la NASA ha localizado bajo el terreno del Planeta rojo hielo de agua como para llenar el Lago Superior, el mayor de los Grandes Lagos de Norteamérica, situado entre EE.UU. y Canadá, y el mayor del mundo de agua dulce -por superficie, aunque el lago Baikal de Siberia tiene mayor volumen de agua-. En concreto, el Superior tiene 82.000 km², mayor que la República Checa.

Los científicos examinaron parte de la región de Utopia Planitia, en las latitudes medias del hemisferio norte de Marte, con un instrumento de radar a bordo del orbitador. Los análisis de datos de más de 600 sobrevuelos revelaron un depósito helado con un área más extensa que el estado de Nuevo México. El depósito varía en espesor de aproximadamente 80 a 170 metros, con una composición que es del 50% al 85% de hielo de agua, mezclada con polvo o partículas rocosas más grandes.

En la latitud en la que se encuentra este tesoro congelado -a mitad de camino entre el ecuador y el polo- el hielo de agua no puede persistir en la superficie de Marte. Se sublima en vapor de agua en la atmósfera delgada y seca del planeta. Sin embargo, el depósito de Utopia está protegido de la atmósfera bajo un terreno de entre uno y diez metros de espesor. Por eso resiste.

«Este depósito probablemente se formó a medida que la nieve se fue acumulando en una capa de hielo mezclada con polvo durante un período de la historia de Marte en la que el eje del planeta estaba más inclinado de lo que está hoy», dice Cassie Stuurman, del Instituto de Geofísica de la Universidad de Texas, Austin.

El Marte actual, con una inclinación del eje de 25º, acumula grandes cantidades de agua congelada en los polos. En ciclos que duran alrededor de 120.000 años, la inclinación varía a casi el doble, calentando los polos y conduciendo el hielo a latitudes medias.

Recurso para los astronautas

El nombre de Utopia Planitia se traduce en términos generales como «llanuras del paraíso». El depósito de hielo recién descubierto se extiende por latitudes de 39º a 49º en las llanuras. Representa menos del uno por ciento de todo el hielo de Marte, pero más que duplica el volumen de las gruesas capas de hielo enterradas en las llanuras del norte. Estos depósitos de hielo cerca de la superficie podrían ser un recurso para los astronautas.

«Este depósito está probablemente más accesible que la mayor parte del hielo de agua en Marte, porque está en una latitud relativamente baja y se encuentra en una zona plana, lisa, donde el aterrizaje de una nave espacial sería más fácil que en algunas de las otras zonas con hielo enterrado», explica Jack Holt, de la Universidad de Texas, coautor del artículo que se publica en la revista Geophysical Research Letters.

El agua de esta planicie está congelada en todo momento. Si hubiera una capa fundida -lo que sería importante para la posibilidad de vida en Marte- habría sido evidente en los escaneos de radar. Sin embargo, es posible que ocurriera con diferentes condiciones climáticas, cuando el eje del planeta estaba más inclinado. «Pero no sabemos si podría haber habido suficiente agua líquida en algún momento como para sostener la vida microbiana», dice Holt.

El gran volumen de hielo detectado aumenta la comprensión de la historia de Marte e identifica un posible recurso para su uso futuro. «Sabemos que en sus inicios, Marte tenía suficiente agua líquida en la superficie de los ríos y lagos. ¿Dónde se fue? Gran parte acabó en la parte superior de la atmósfera. Pero también hay una gran cantidad que es ahora hielo subterráneo, y queremos seguir aprendiendo más acerca de eso», dice Leslie Tamppari, del Laboratorio de Propulsión a Chorro (JPL) de la NASA, en Pasadena, California (EE.UU.).

«El uso de este hielo por una misión futura podría ayudar a mantener vivos a los astronautas, mientras que también ayuda a desbloquear los secretos de las edades de hielo de Marte», subraya Joe Levy, de la Universidad de Texas, coautor del nuevo estudio.


ABC.es

  • Astrónomos creen saber qué puede tener la fuerza suficiente para mover 50 galaxias a la vez
 La Vía Láctea - Archivo

La Vía Láctea – Archivo

La Vía Láctea, junto con el resto de los miembros que forman el grupo local de galaxias en que vivimos, está en continuo movimiento. De hecho, todo el grupo (unas 50 galaxias diferentes) parece estar siendo atraído hacia una misma dirección, arrastrado probablemente por la enorme gravedad de algún objeto enorme y desconocido. ¿Pero qué puede tener la fuerza suficiente para mover 50 galaxias a la vez? La respuesta ha sido, durante décadas, un misterio para los científicos.

Ahora, un equipo internacional de astrónomos cree haber descubierto, por fin, al culpable: un “supercúmulo” de galaxias, formado por varios cientos de miembros, que resulta estar bastante cerca de nosotros pero que había permanecido oculto a la vista por culpa de las nubes de gas, polvo y estrellas de nuestra propia galaxia. Si comparamos la Vía Láctea con un edificio, sería como intentar ver desde dentro y a través de las paredes los edificios vecinos.

Anteriores estudios sobre el movimiento del grupo local de galaxias ya predecían que debía de haber “algo” oculto detrás de la Vía Láctea. Otras investigaciones galácticas en la constelación de la Vela, a través del cual cruza el plano de nuestra galaxia, también sugerían que en esa zona había una densidad de galaxias superior a lo normal.

 Ahora, y gracias a la combinación del gran Telescopio Surafricano, con su espejo de 10 metros, y el Telescopio Anglo Australiano, de 3,9 metros, los astrónomos han conseguido medir el corrimiento hacia el rojo de 4.500 galaxias en Vela, a ambos lados de la banda oscura de la Vía Láctea, y han confirmado que, efectivamente, existe una “superpoblación galactica” en esa zona, a unos 800 millones de años luz de distancia. Los resultados de la investigación se acaban de publicar en Montly Notices of the Royal Astronomical Society.

Lo cual significa que en nuestro vecindario cósmico existe una segunda estructura gigante, algo más lejos del super cúmulo de Shapley, que ya se conocía, y del que se pensaba que era el único “coloso” que había en los alrededores. Recién bautizado como el supercúmulo de Vega, ese conjunto de galaxias está atrayendo hacia sí a todo nuestro grupo local, que se dirige hacia él a la nada desdeñable velocidad de 50 km. por segundo. Muy rápido a escala humana, pero muy lento en términos galácticos. Si la velocidad no varía, en efecto, llegaremos allí dentro de unos cinco billones de años.


ABC.es

  • Las agencias espaciales de Europa y Estados Unidos tratarán por primera vez de desviar un asteroide de su rumbo

El blanco es una pareja de asteroides llamada Didymos. Y el objetivo, demostrar si estamos, o no, preparados para desviar de su trayectoria un asteroide en ruta de colisión contra la Tierra. Para ello, las agencias espaciales europea y norteamericana, ESA y NASA, se han unido para llevar a cabo una misión sin precedentes en toda la historia espacial. Tras las siglas AIDA (Asteroid Impact and Deflection Assessment) se esconde, en efecto, el mejor plan de defensa planetaria ideado hasta la fecha para evitar el catastrófico impacto de una roca espacial contra nosotros. Está previsto que AIDA reciba luz verde este mismo mes de diciembre. Por eso, las numerosas empresas implicadas, entre ellas varias españolas, están ya culminando los trabajos de definición detallada de las diferentes fases de esta histórica misión. Se trata de una carrera contra reloj, ya que Didymos no espera. En estos momentos, en efecto, los dos asteroides se dirigen a toda velocidad hacia nosotros, y en el año 2022 se encontrarán a solo 11 millones de km. de la Tierra. Será en ese, y solo en ese momento, cuando estén lo suficientemente cerca como para realizar la prueba, de modo que no hay ni un minuto que perder. AIDA será, pues, la primera demostración real de la técnica de impacto cinético para cambiar la trayectoria de un asteroide en el espacio. La misión consta de dos naves independientes, la DART (Double Asteroid Redirection Test), de la NASA, y la AIM (Asteroid Impact Mission) de la ESA. Las dos deberán poner a prueba las tecnologías desarrolladas en ambos continentes para desviar asteroides potencialmente peligrosos. Por eso, el principal objetivo de AIDA es el de demostrar y medir los efectos de un impacto directo contra un pequeño asteroide, y determinar si es suficiente como para desviarlo de su rumbo. El blanco elegido para la demostración es sistema binario de asteroides Didymos, que consiste en una roca principal de unos 800 metros de diámetro y otra secundaria, de 150 metros, que orbita a su alrededor. La prueba de impacto se llevará a cabo contra el miembro más pequeño de la pareja, ya que su tamaño es el más habitual entre los asteroides que pueden suponer una amenaza para la Tierra. De las dos naves, será la estadounidense DART la encargada de hacer impacto, y se estrellará contra la pequeña luna a una velocidad aproximada de 6 km. por segundo. Para no errar su objetivo, DART cuenta con una cámara y un sofisticado software autónomo de navegación. La colisión cambiará la velocidad de la pequeña luna en su órbita alrededor del cuerpo principal en apenas un 1%, justo lo necesario como para observar sus efectos con telescopios desde la Tierra. Y un porcentaje, además, lo suficiemtemente pequeño como para no provocar un involuntario cambio de trayectoria que pudiera hacer que la roca se dirija directamente hacia nosotros. La segunda nave, la europea AIM, que llegará al asteroide unos meses antes que DART, utilizará su amplia gama de instrumentos científicos para estudiar primero todas y cada una de las características de ambos cuerpos, y observar después con todo detalle el impacto de su compañera de misión. AIM llevará a cabo el primer estudio "in situ" de un asteroide binario, proporcionará imágenes en alta resolución de las superficies de ambos cuerpos y medirá sus masas, densidades y formas. Cuando llegue el momento, AIM se colocará en una órbita segura alrededor de Didymos y examinará el material eyectado al espacio tras la colisión de su compañera. Sus instrumentos, además, observarán los efectos del impacto, medirán la posible transferencia de material entre los dos asteroides, observarán el cráter dejado por DART y la forma en que el material de la pequeña luna se redistribuye tras la colisión. AIM también estudará la estructura interna de este fascinante asteroide doble. Módulo de aterrizaje Además, AIM desplegará sobre la superficie del objetivo un módulo de aterrizaje, llamado MASCOT-2 (Mobile Asteroid Surface Scout), para que tome medidas y datos antes, durante y después del impacto de DART. Y liberará también dos pequeños satélites auxiliares, CubeSats, que recabarán datos de los dos asteroideas antes y después del impacto de la nave norteamericana. Si todo va como está previsto, la Agencia Espacial Europea lanzará AIM en Octubre de 2020, y llegará a Didymos en Mayo de 2022. La NASA, por su parte, lanzará DART en Diciembre de 2020 para interceptar al asteroide doble en Octubre de 2022, cuando Didymos esté solo a 11 millones de Km. de la Tierra y sea posible observarlo directamente con telescopios terrestres. Como se ha dicho, Didymos se acerca y no hay tiempo que perder. Por eso, la industria está trabajando a un ritmo frenético para llegar a tiempo a la cita con el asteroide doble. Solo en Europa, más de 40 empresas de 15 estados diferentes llevan desde 2011 poniendo a punto todos y cada uno de los detalles de esta histórica misión. En Madrid, por ejemplo, el grupo GMV está llevando a cabo pruebas críticas en la cámara de navegación proporcionada por el Instituto Max Planck alemán. Para evaluar el software de navegación basado en imágenes de la misión, GMV está haciendo que la cámara examine imágenes que la sonda Rosetta de la ESA tomó al sobrevolar Lutetia, un asteroide de 100 km de diámetro, de camino hacia 67P/Churyumov-Gerasimenko.

El blanco es una pareja de asteroides llamada Didymos. Y el objetivo, demostrar si estamos, o no, preparados para desviar de su trayectoria un asteroide en ruta de colisión contra la Tierra. Para ello, las agencias espaciales europea y norteamericana, ESA y NASA, se han unido para llevar a cabo una misión sin precedentes en toda la historia espacial. Tras las siglas AIDA (Asteroid Impact and Deflection Assessment) se esconde, en efecto, el mejor plan de defensa planetaria ideado hasta la fecha para evitar el catastrófico impacto de una roca espacial contra nosotros.

Está previsto que AIDA reciba luz verde este mismo mes de diciembre. Por eso, las numerosas empresas implicadas, entre ellas varias españolas, están ya culminando los trabajos de definición detallada de las diferentes fases de esta histórica misión. Se trata de una carrera contra reloj, ya que Didymos no espera. En estos momentos, en efecto, los dos asteroides se dirigen a toda velocidad hacia nosotros, y en el año 2022 se encontrarán a solo 11 millones de km. de la Tierra. Será en ese, y solo en ese momento, cuando estén lo suficientemente cerca como para realizar la prueba, de modo que no hay ni un minuto que perder.

AIDA será, pues, la primera demostración real de la técnica de impacto cinético para cambiar la trayectoria de un asteroide en el espacio. La misión consta de dos naves independientes, la DART (Double Asteroid Redirection Test), de la NASA, y la AIM (Asteroid Impact Mission) de la ESA. Las dos deberán poner a prueba las tecnologías desarrolladas en ambos continentes para desviar asteroides potencialmente peligrosos. Por eso, el principal objetivo de AIDA es el de demostrar y medir los efectos de un impacto directo contra un pequeño asteroide, y determinar si es suficiente como para desviarlo de su rumbo.

El blanco elegido para la demostración es sistema binario de asteroides Didymos, que consiste en una roca principal de unos 800 metros de diámetro y otra secundaria, de 150 metros, que orbita a su alrededor. La prueba de impacto se llevará a cabo contra el miembro más pequeño de la pareja, ya que su tamaño es el más habitual entre los asteroides que pueden suponer una amenaza para la Tierra.

De las dos naves, será la estadounidense DART la encargada de hacer impacto, y se estrellará contra la pequeña luna a una velocidad aproximada de 6 km. por segundo. Para no errar su objetivo, DART cuenta con una cámara y un sofisticado software autónomo de navegación. La colisión cambiará la velocidad de la pequeña luna en su órbita alrededor del cuerpo principal en apenas un 1%, justo lo necesario como para observar sus efectos con telescopios desde la Tierra. Y un porcentaje, además, lo suficiemtemente pequeño como para no provocar un involuntario cambio de trayectoria que pudiera hacer que la roca se dirija directamente hacia nosotros.

La segunda nave, la europea AIM, que llegará al asteroide unos meses antes que DART, utilizará su amplia gama de instrumentos científicos para estudiar primero todas y cada una de las características de ambos cuerpos, y observar después con todo detalle el impacto de su compañera de misión. AIM llevará a cabo el primer estudio “in situ” de un asteroide binario, proporcionará imágenes en alta resolución de las superficies de ambos cuerpos y medirá sus masas, densidades y formas. Cuando llegue el momento, AIM se colocará en una órbita segura alrededor de Didymos y examinará el material eyectado al espacio tras la colisión de su compañera. Sus instrumentos, además, observarán los efectos del impacto, medirán la posible transferencia de material entre los dos asteroides, observarán el cráter dejado por DART y la forma en que el material de la pequeña luna se redistribuye tras la colisión. AIM también estudará la estructura interna de este fascinante asteroide doble.

Módulo de aterrizaje

Además, AIM desplegará sobre la superficie del objetivo un módulo de aterrizaje, llamado MASCOT-2 (Mobile Asteroid Surface Scout), para que tome medidas y datos antes, durante y después del impacto de DART. Y liberará también dos pequeños satélites auxiliares, CubeSats, que recabarán datos de los dos asteroideas antes y después del impacto de la nave norteamericana.

Si todo va como está previsto, la Agencia Espacial Europea lanzará AIM en Octubre de 2020, y llegará a Didymos en Mayo de 2022. La NASA, por su parte, lanzará DART en Diciembre de 2020 para interceptar al asteroide doble en Octubre de 2022, cuando Didymos esté solo a 11 millones de Km. de la Tierra y sea posible observarlo directamente con telescopios terrestres.

Como se ha dicho, Didymos se acerca y no hay tiempo que perder. Por eso, la industria está trabajando a un ritmo frenético para llegar a tiempo a la cita con el asteroide doble. Solo en Europa, más de 40 empresas de 15 estados diferentes llevan desde 2011 poniendo a punto todos y cada uno de los detalles de esta histórica misión.

En Madrid, por ejemplo, el grupo GMV está llevando a cabo pruebas críticas en la cámara de navegación proporcionada por el Instituto Max Planck alemán. Para evaluar el software de navegación basado en imágenes de la misión, GMV está haciendo que la cámara examine imágenes que la sonda Rosetta de la ESA tomó al sobrevolar Lutetia, un asteroide de 100 km de diámetro, de camino hacia 67P/Churyumov-Gerasimenko.


ABC.es

  • La inmensa ola de gas y estrellas forma una estructura parecida a un párpado
 Un tsunami de gas y estrellas en la galaxia IC2163 - M. Kaufman; B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO); NASA/ESA Hubble Space Telescope

Un tsunami de gas y estrellas en la galaxia IC2163 – M. Kaufman; B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO); NASA/ESA Hubble Space Telescope

El Universo no deja de darnos sorpresas. Esta vez se trata de un descomunal “tunami” cósmico, una ola gigantesca de gas y estrellas avanzando a toda velocidad a través del disco de una galaxia espiral conocida como IC 2163. Esta formidable oleada de materiales, que se originó cuando, recientemente, la galaxia IC 2163 desplazó lateralmente a otra galaxia espiral denominada NGC 2207, produjo una serie de brillantes arcos de formación estelar, que en la imagen (en naranja) recuerdan a la forma de dos gigantescos párpados. El espectáculo cósmico fue captado por un equipo de científicos desde el Telescopio ALMA (Atacama Large Millimeter/submillimeter Array), en Chile. El estudio acaba de publicarse en la revista Astrophysical Journal.

“A pesar de que las colisiones de esta clase no son algo raro -explica Michele Kaufman, astrónomo de la Universidad Estatal de Ohio en Columbus y autor principal del estudio- apenas se conocen unas pocas galaxias oculares, esto es, con estructuras parecidas a los ojos”.

Kaufman y sus colegas creen que la escasez de esta clase de formaciones en el Universo observable se debe a que tienen una naturaleza efímera. “Los párpados galácticos -explica el investigador- duran apenas unas decenas de millones de años, que es un tiempo increiblemente breve en la vida de una galaxia. Encontrar unos párpados prácticamente recién formados nos brinda una oportunidad excepcional para estudiar lo que sucede cuando una galaxia roza a otra”.

Esta pareja concreta de galaxias se encuentra a unos 114 millones de años luz de la Tierra, en la dirección de la constelación Canis Major. Ambas se rozaron, raspando los bordes de sus brazos espitales externos, en el que seguramente fue el primero de una serie de encuentros que tendrán lugar en el futuro. Al final, con toda probabilidad, ambas galaxias terminarán fusionándose en una sola, mucho mayor.

Gracias a la extraordinaria resolución y sensibilidad del telescopio ALMA, los astrónomos lograron tomar medidas extraordinariamente detalladas del movimiento del gas monóxido de carbono en el interior del gigantesco “tsunami” (los estrechos “párpados” de la galaxia). El monóxido de carbono es un gas traza del gas molecular que constituye el combustible principal para la formación de nuevas estrellas.

Los datos revelan que el gas en la parte exterior de los “párpados” de IC 2163 se mueve hacia dentro a velocidades de más de 100 km. por segundo. El gas, sin embargo, está decelerando rápidamente y sus movimientos se van haciendo más caóticos, a medida que cambia su trayectoria y se alinea con la rotación de la galaxia en vez de seguir precipitándose hacia su centro.

“Lo que observamos en esta galaxia -explica por su parte Bruce Elmegreen, científico del Centro de Investigación Watsonm de IBM, en Yorktown Heights, y coautor del artículo- es algo muy parecido a una enorme ola oceánica que se desplaza sin freno hacia la orilla hasta que se topa con aguas poco profundas, lo que hace que pierda el impulso y termine por vaciar toda su agua y arena en la playa”.

Para Kaufman, “no solo hallamos una rápida deceleración del gas a medida que éste se mueve desde los bortes exteriores es a los bordes intérnos de los párpados, sino que nos hemos dado cuenta de que cuanto más rápidamente se desacelera, más denso resulta el gas molecular. Esta medición directa de su compresión muestra cómo el encuentro entre dos galaxias lleva al gas a amontonarse, a desovar nuevos cúmulos estelares y a formar las deslumbrantes características del párpado”.

Los modelos de ordenador predicen que estas estructuras en forma de párpado logran formarse solo si las galaxias han interactuado de una forma muy específica. “Esta evidencia de una fuerte onda de choque resulta fenomenal -afirma Curtis Struck, otro de los autores de la investigación-. Está muy bien tener una teoría y simulaciones que sugieren que debe ser cierta, pero tener una evidencia observacional directa es mucho mejor”.

“ALMA nos ha mostrado que las velocidades del gas molecular dentro de la ola concuerdan con las predicciones de los modelos informáticos -asegura Kaufman-. Nunca habíamos podido, hasta ahora, poner a prueba las simulaciones de encuentros galácticos de esta manera”.

Los astrónomos piensan que esta clase de encuentros galácticos eran muy comunes en el Universo primitivo, cuando todas las galaxias estaban muy juntas unas de otras. En aquellos momentos, sin embargo, los discos galácticos solían ser grumosos e irregulares, por lo que alguna otra clase de procesos pudo llevar también al desarrollo de estructuras parecidas a las observadas.

A %d blogueros les gusta esto: