La foto más completa de la Vía Láctea


El Mundo

@teresaguerrerof

14455175823476

La estrella Eta Carinae Lehrstuhl für Astrophysik, RUB

  • Componen una imagen de 46.000 millones de píxeles que muestra el cielo visible desde el Hemisferio Sur
  • Ensamblaron fotos tomadas durante cinco años desde un observatorio del desierto de Atacama

Para observar las estrellas de la Vía Láctea se puede mirar al cielo nocturno o si no es posible, entrar en internet para ver con detalle los objetos celestes que la conforman. Cortesía de un equipo de astrónomos de una universidad alemana, la Ruhr University Bochum (RUB), en la Red ya está disponible la imagen más completa captada hasta ahora de nuestra galaxia. Según sus autores, se trata también de la fotografía astronómica de mayor tamaño.

La han compuesto tras cinco años de observaciones del cielo del Hemisferio Sur desde el privilegiado emplazamiento del desierto de Atacama, en Chile, donde este centro universitario tiene un observatorio.

El telescopio RUB está situado a unos 20 kilómetros del observatorio europeo más grande, el Very Large Telescope, en Cerro Paranal. La altitud a la que se encuentran estos observatorios chilenos junto a la gran cantidad de noches despejadas que hay en el desierto chileno hacen de este lugar uno de los mejores para la observación astronómica.

El resultado ha sido una fotografía de 46.000 millones de píxeles que contiene alrededor de 50.000 objetos celestes descubiertos durante todas esas noches de observaciones.

El cielo, dividido en 268 partes

Los investigadores han desarrollado una herramienta que facilita la búsqueda de estrellas concretas y de otros cuerpo celestes. Por ejemplo, se puede ver una panorámica general de la Vía Láctea o hacer zoom para observar áreas específicas. El usuario puede también hacer búsquedas específicas a través de un cajetín en el que se puede introducir el nombre de objetos celestes. Así, si se teclea Eta Carinae mostrará el lugar en el que se encuentra esta estrella, una de las más masivas y famosas de nuestra galaxia, y que se encuentra situada en la constelación de la Quilla. Si se busca M8, la herramienta conducirá al usuario hasta la Nebulosa de la Laguna.

Según explica el equipo alemán, la región del cielo que han observado es tan amplia que la han dividido en 268 secciones. Cada una de estas áreas fue fotografiada en intervalos de varios días. Comparando las imágenes, explican, fueron capaces de identificar los objetos con brillo variable.

Posteriormente ensamblaron las fotos tomadas de cada sección para componer una única imagen. “Elegimos las nueve mejores de cada uno de los 268 campos (para cada filtro) y las ensamblamos”, detalla a este diario Rolf Chiri, director del Observatorio RUB. El astrofísico viaja a Chile entre cuatro y seis veces al año para realizar observaciones y tareas de mantenimiento del telescopio.

Uno de los principales focos de interés para su equipo científico ha sido estudiar cómo el brillo de las estrellas cambia a lo largo de largos periodos de tiempo. Los científicos analizaron el fenómeno por el cual los astros con más masa (cien veces más que nuestro sol) solían estar en sistemas de estrellas binarias.

De las 800 estrellas muy masivas que analizaron, más del 90% se encontraban en sistemas múltiples, de entre dos y cuatro estrellas. Uno de los obstáculos para estudiarlas es que suelen estar tan cerca unas de otras que no pueden distinguirse bien. Para paliar este problema, utilizaron un truco: dividieron la luz que emitían las estrellas en diferentes longitudes de onda, pues la composición química de una estrella determina en qué longitudes de onda emite luz. Así pueden determinar si un objeto que parece una estrella individual lo es realmente o está compuesto por varios astros.

Un «anillo de diamantes» brilla en el cielo


ABC.es

  • Esta hermosa burbuja azul, aparecida a unos 1.500 años luz de la Tierra, sorprende por su perfecta forma circular

Un «anillo de diamantes» brilla en el cielo

ESO La nebulosa planetaria Abell 33, captada utilizando el telescopio VLT (Very Large Telescope) de ESO

Un equipo de astrónomos ha captado desde Chile una de esas preciosas imágenes cósmicas que, como ocurre a veces al mirar las nubes, parecen mostrarnos objetos imposibles en el cielo. Se trata de una fotografía de la nebulosa planetaria PN A66 33, más conocida como Abell 33, una hermosa burbuja azul situada a unos 1.500 años luz de la Tierra y creada durante el proceso de envejecimiento de una estrella. Resulta que, de forma casual, la nebulosa está ahora alineada con una estrella (en la imagen, en primer plano), lo que da como resultado un parecido asombroso con un anillo de diamantes. Esta joya cósmica es inusualmente simétrica, con una perfecta forma circular.

La mayor parte de las estrellas con masas similares a la de nuestro Sol acaban sus vidas como enanas blancas, cuerpos pequeños, calientes y muy densos que se enfrían muy despacio a lo largo de miles de millones de años. En el camino hacia la fase final de sus vidas, las estrellas lanzan al espacio sus atmósferas y crean nebulosas planetarias, coloridas nubes brillantes de gas que envuelven a las pequeñas y refulgentes reliquias estelares, explican desde el Observatorio Europeo Austral (ESO).

En esta imagen, captada por el telescopio VLT (Very Large Telescope) de ESO, la nebulosa planetaria Abell 33 aparece asombrosamente redonda, algo muy poco común en estos objetos, ya que normalmente algo perturba la simetría y acaban adquiriendo formas irregulares.

Un compromiso casual

La refulgente estrella situada en el borde de la nebulosa crea el efecto final del diamante, como si se tratara de un anillo de compromiso centelleante. Se trata tan solo de un alineamiento casual: la estrella, llamada HD 83535, se encuentra en primer plano, frente a la nebulosa, a medio camino entre la Tierra y Abell 33, justo en el lugar adecuado para embellecer aún más la imagen.

En el interior de la nebulosa, visible como una diminuta perla blanca y ligeramente descentrada, puede observarse el remanente de la estrella progenitora de Abell 33 en el proceso de transformarse en una enana blanca. Aún brilla más que nuestro Sol y emite la suficiente cantidad de radiación ultravioleta como para hacer que resplandezca la burbuja de atmósferas expulsadas al espacio.

Abell 33 es uno de los 86 objetos incluidos en el Catálogo Abell de Nebulosas Planetarias creado por George Abell en 1966. Abell también rastreó el cielo en busca de cúmulos de galaxias, recopilando el Catálogo Abell, con unos 4.000 cúmulos, tanto en el hemisferio norte como en el hemisferio sur del cielo.

Encuentran una estrella idéntica al sol pero 4.000 millones de años más vieja


El Mundo

ASTRONOMÍA | A 250 años luz de la tierra

https://i2.wp.com/img.europapress.net/fotoweb/fotonoticia_20130829053804_800.jpg

El ciclo de vida de una estrella similar al Sol | ESO

Un grupo de investigadores ha encontrado una estrella “en esencia” idéntica al Sol pero 4.000 millones de años más vieja. Según los científicos, el hallazgo ayudará a estudiar la historia y futura evolución del Sol, así como a esclarecer la relación entre la edad de una estrella y su contenido de litio.

El grupo de investigadores, liderado por astrónomos brasileños, ha utilizado el ‘Very Large Telescope’ del Observatorio Europeo del Sur para observar el astro, HIP 102152, situado a 250 años luz de la Tierra, y creen además que podría albergar planetas rocosos en su órbita.

El líder del equipo de científicos, Jorge Meléndez, ha destacado la “calidad excepcional” de los espectros que se han logrado captar de la estrella y ha explicado que, desde que se encontró el primer “gemelo solar”, se han hallado muy pocos.

Así, según el astrónomo, el descubrimiento permitirá comparar las investigaciones con otros “gemelos solares” para tratar de “responder a pregunta de qué tan especial es el Sol”.

El misterio del litio

El primer descubrimiento que ha aportado la observación de HIP 102152, la estrella más parecida al Sol a la fecha, podría ayudar a comprender por qué el contenido de litio en nuestro astro, material del que está formado, es “tan sorprendentemente bajo”.

El litio, tercer elemento de la tabla periódica, se creó en el Big Bang junto con el hidrógeno y el helio. Durante años, los astrónomos se han preguntado por qué algunas estrellas parecen tener menos litio que otras.

Según el equipo de investigadores, la observación de gemelos menores que el Sol había mostrado que la cantidad de litio de estos astros era mayor que la de la estrella más cercana a la Tierra. Ahora, gracias al nuevo descubrimiento, se ha podido advertir que la cantidad de litio de HIP 102152 es menor que el sol.

“Hemos descubierto que HIP 102152 posee muy bajos niveles de litio. Esto demuestra claramente, por primera vez, que los gemelos solares más antiguos efectivamente tienen menos litio que nuestro propio Sol o gemelos solares más jóvenes”, ha explicado la autora principal de la investigación, TalaWanda Monroe.

“Ahora podemos estar seguros de que las estrellas destruyen de alguna forma el litio que las compone a medida que envejecen“, ha concluido

El remolino azul que alberga explosiones violentas de supernovas


El Mundo

Galaxia espiral NGC 1187 obtenida con el VLT. | ESO

Galaxia espiral NGC 1187 obtenida con el VLT. | ESO

El Observatorio Austral Europeo (ESO, por sus siglas en inglés) ha vuelto a divulgar una espectacular y nítida imagen gracias al telescopio VLT (Very Large Telescope). En la nueva instantánea se observa la galaxia NGC 1187 , una perfecta espiral a 60 millones de años luz de la Tierra en la constelación de Eridanus (El Río). Pese a su aparente tranquilidad, la galaxia ha albergado dos explosiones de supernova durante los últimos treinta años, la última en el año 2007. Esta imagen de la galaxia es la más precisa de las obtenidas hasta el momento

NGC 1187 parece una galaxia tranquila e inmutable, pero ha albergado dos explosiones de supernova desde 1982. Una supernova es una violenta explosión estelar, resultante de la muerte de una estrella masiva o de una enana blanca en un sistema binario. Las supernovas son uno de los fenómenos más energéticos del universo, y son tan brillantes que a menudo iluminan brevemente una galaxia al completo antes de desaparecer de nuestra vista durante semanas o meses. Durante este corto periodo de tiempo una supernova puede irradiar tanta energía como la que se estima que emitirá el Sol a lo largo de toda su vida.

En octubre de 1982, se descubrió la primera supernova en NGC 1187, desde La Silla, un observatorio de la ESO. Más recientemente, en 2007, el astrónomo aficionado Berto Monard, localizó desde Sudáfrica otra supernova en esta galaxia. Posteriormente, un equipo de astrónomos elaboró un detallado estudio y monitorizó esta supernova durante alrededor de un año utilizando numerosos telescopios.

Esta nueva imagen de NGC 1187 fue creada a partir de observaciones obtenidas como parte de este estudio y la supernova puede verse, mucho después de su pico de brillo máximo, cerca del extremo inferior de la imagen.

La galaxia NGC 1187 se ve casi de frente en la nueva imagen del VLT, que muestra con claridad su estructura espiral. Pueden verse alrededor demedia docena de brazos espirales prominentes, cada uno de los cuales contiene grandes cantidades de gas y polvo. Los rastros azulados de los brazos espirales indican la presencia de estrellas jóvenes nacidas de las nubes de gas interestelar.

En las zonas centrales brilla el protuberante centro en tonos amarillos. Esta parte de la galaxia está compuesta, principalmente, de estrellas viejas, gas y polvo. En el caso de NGC 1187, más que un centro redondeado, hay una sutil estructura central en forma de barra. Se cree que esta característica forma barrada actúa como un mecanismo que canaliza el gas procedente de los brazos espirales hacia el centro, aumentando la formación estelar en esa zona.

En los alrededores de la galaxia, pueden verse muchas más galaxias más débiles y distantes. Algunas incluso brillan a través del disco de NGC 1187. Sus tonos predominantemente rojizos contrastan con los cúmulos de estrellas azul pálido de los objetos más cercanos.

Estos datos fueron obtenidos utilizando el instrumento FORS1, instalado en el Very Large Telescope de ESO, en el Observatorio Paranal, en Chile.

Una nueva técnica para explorar las atmósferas de los planetas fuera del Sistema Solar


El Mundo

Impresión artística del exoplaneta 'Tau Boötis b' y su estrella. | ESO

Impresión artística del exoplaneta ‘Tau Boötis b’ y su estrella. | ESO

‘Tau Boötis b’ fue uno de los primeros exoplanetas descubiertos en los años 90. Quince años después, sigue siendo uno de los más cercanos que se conocen y eso teniendo en cuenta que ya se ha confirmado la existencia de 750 planetas fuera de nuestro Sistema Solar, a los que suman alrededor de 2.000 candidatos a entrar en la lista.

‘Tau Boötis b’ es un gran ‘júpiter caliente’ que orbita muy cerca de su estrella anfitriona. Pese a que su estrella anfitriona es fácilmente visible, hasta ahora este planeta solo podía detectarse por sus efectos gravitatorios sobre la estrella.

Un equipo internacional de astrónomos ha ideado una nueva e ingeniosa técnica que permite estudiar la atmósfera de un exoplaneta en detalle, incluso sin la necesidad de que pase delante de su estrella anfitriona. Los detalles de este estudio se publican en la revista ‘Nature’.

Por primera vez, han estudiado la atmósfera del planeta y han medido su órbita y su masa de forma muy precisa, resolviendo así un obstáculo que han tenido durante unos 15 años.

Lo han logrado usando el ‘Very Large Telescope’ (VLT) del Observatorio Europeo Austral (ESO), situado en el Observatorio Paranal (Chile), para captar directamente el débil brillo del planeta ‘Tau Boötis b’. Se combinaron observaciones infrarrojas de alta calidad (en longitudes de onda de alrededor de 2,3 micras) con un nuevo truco para extraer la débil señal del planeta a partir de la luz mucho más potente emitida por la estrella anfitriona.

Como muchos exoplanetas, ‘Tau Boötis b’ no transita el disco de su estrella (como en el reciente tránsito de Venus). Hasta ahora estos tránsitos eran esenciales para permitir el estudio de las atmósferas de los ‘jupiteres calientes’: cuando un planeta pasa frente a su estrella las propiedades de su atmósfera quedan impresas en la luz de la estrella. Como no hay luz estelar que brille a través de la atmósfera de Tau Boötis b hacia nosotros, la atmósfera del planeta no ha podido ser estudiada antes.

Cálculo de su masa

En una nota de prensa de ESO, el investigador principal de este trabajo, Matteo Brogi, del Observatorio Leiden, en Países Bajos, explica: “Gracias a las observaciones de alta calidad proporcionadas por el VLT y CRIRES fuimos capaces de estudiar el espectro del sistema con el nivel de detalle más alto logrado hasta el momento. Solo un 0,01% de la luz que vemos viene del planeta, y el resto proviene de la estrella, por lo que no fue fácil”.

La mayoría de los planetas alrededor de otras estrellas fueron descubiertos por sus efectos gravitatorios sobre las estrellas anfitrionas, lo que limita la información que puede obtenerse de su masa: solo permiten obtener un límite inferior para la masa de un planeta. Así que ver directamente la luz del planeta ha permitido a los astrónomos medir el ángulo de la órbita del planeta y, de ahí, extraer su masa con precisión.

Composición de la atmósfera

Además de detectar el brillo de la atmósfera y de medir la masa de ‘Tau Boötis b’, el equipo ha estudiado su atmósfera y ha medido la cantidad de monóxido de carbono existente, así como la temperatura a diferentes alturas por medio de una comparación hecha entre las observaciones y unos modelos teóricos. Uno de los resultados más sorprendentes de este trabajo ha sido que las nuevas observaciones indicaban una atmósfera con una temperatura que desciende a medida que aumenta la altura. Este resultado es exactamente el opuesto a la inversión térmica —un aumento en la temperatura a mayor altitud— encontrado en otros exoplanetas tipo Júpiter.

Por su parte, Ignas Snellen, coautor del artículo e investigador del Observatorio de Leiden, considera que a partir de ahora, los astrónomos podrán estudiar las atmósferas de los exoplanetas que no transitan a sus estrellas, así como medir sus masas de forma precisa, lo cual antes era imposible: “Es un gran paso adelante”, asegura.