La NASA lanza con éxito una misión que estudiará el campo magnético de la Tierra


El Mundo

  • El Sistema Multiescala Magnetosférico (MMS) consta de cuatro observatorios espaciales
14262166532742

Atlas V equipado con el Sistema Multiescala Magnetosférico (MMS), en Cabo Cañaveral antes del lanzamiento | AFP

La agencia espacial estadounidense (NASA) lanzó hoy con éxito una misión pionera para estudiar la interacción del campo magnético de la Tierra con el de otros cuerpos celestes, como el Sol, que permitirá estudiar con mayor precisión cómo actúan estos intercambios de energía en el universo.

El lanzamiento se llevó a cabo a las 22.44 hora local (02.44 GMT del viernes) desde las instalaciones de la NASA en la base de Cabo Cañaveral, en Florida.

Los cuatro observatorios espaciales idénticos que componen el Sistema Multiescala Magnetosférico (MMS) partieron a bordo de un cohete Atlas V.

“Los responsables de la misión esperan recibir la confirmación del despliegue exitoso de los cuatro artefactos espaciales alrededor de las 00:29 hora local (04:44 hora GMT del viernes)”, explicó la NASA en una nota. La misión comenzará a enviar datos a la tierra, en septiembre, y está previsto que esté en funcionamiento durante dos años, aunque la NASA no descarta ampliar su vida útil.

La misión proporcionará la primera vista tridimensional de la reconexión magnética de la Tierra con el Sol, un proceso que ayudará a entender cómo se conectan y desconectan los campos magnéticos en el universo. Los científicos esperan obtener datos sobre la estructura y dinámica de la energía que intercambian los campos magnéticos cuando se encuentran, momento en el que se produce una liberación explosiva de energía.

Los cuatro artefactos espaciales, equipados con sensores de alta precisión, volarán simultáneamente en formación, a una distancia de unos 10 kilómetros unas de otras, para que la combinación de sus datos permita tener esa visión tridimensional.

La misión MMS utilizará la magnetosfera de la Tierra como un laboratorio para estudiar, además de la reconexión magnética, otros dos procesos fundamentales como la aceleración de partículas energéticas y la turbulencia.

Esta misión también será clave para entender cómo afecta este intercambio energético a los fenómenos meteorológicos espaciales y su efecto sobre los sistemas tecnológicos modernos como las redes de comunicaciones, de navegación GPS y las redes de energía eléctrica.

La reconexión magnética produce fenómenos como las auroras que se ven en los polos cuando el viento solar penetra en nuestro “escudo protector” y las partículas de energía liberadas entran en el campo magnético de la Tierra.

Investigadores dicen que el Universo no tiene principio ni fin


ABC.es

  • Un nuevo estudio pone en cuestión el Big Bang y sugiere que el Cosmos existió siempre

El Universo puede haber existido desde siempre, de acuerdo con un nuevo modelo que aplica términos de corrección cuántica para complementar la teoría de la relatividad general de Einstein. El modelo, según sus autores, también puede explicar existencia de la materia oscura y la energía oscura.

La edad ampliamente aceptada del Universo, según las estimaciones de la relatividad general, es de 13.800 millones de años. En un principio, se pensó que todo lo que existe ocupó en un principio un único punto infinitamente denso, o singularidad. Sólo después de este punto comenzó a expandirse en un ‘Big Bang’, que hizo que el universo comenzase oficialmente.

Aunque la singularidad del ‘Big Bang’ surge directa e inevitable de las matemáticas de la relatividad general, algunos científicos lo ven problemático porque las matemáticas sólo pueden explicar lo que sucedió inmediatamente después, no antes o en la singularidad.

“La singularidad del Big Bang es el problema más grave de la relatividad general, porque las leyes de la Física parecen romperse ahí abajo”, dice a Phys.org Ahmed Farag Ali, de la Universidad de Benha (Egipto).

Ali y el coautor Saurya Das, de la Universidad de Lethbridge en Alberta, Canadá, han mostrado en un artículo publicado en Physics Letters B que la singularidad del Big Bang puede ser resuelta por su nuevo modelo, en el que el Universo no tiene principio ni fin.

Estos físicos enfatizan que sus términos de corrección cuántica no se aplican ‘ad hoc’ en un intento de eliminar específicamente la singularidad del ‘Big Bang’. Su trabajo se basa en las ideas por el físico teórico David Bohm, quien también es conocido por sus contribuciones a la Filosofía de la Física. A partir de la década de 1950, Bohm exploró reemplazar las geodesias clásicas (el camino más corto entre dos puntos de una superficie curva) con trayectorias cuánticas.

En su artículo, Ali y Das aplican estas trayectorias de Bohm a una ecuación desarrollada en la década de 1950 por el físico Amal Kumar Raychaudhuri, en la Universidad Presidency en Calcuta, India. Raychaudhuri fue también maestro de Das cuando era un estudiante universitario de esta institución en los años 90.

Usando la ecuación de Raychaudhuri cuánticamente corregida, Ali y Das derivan ecuaciones de Friedmann cuánticamente corregidas, que describen la expansión y evolución del universo (incluyendo el Big Bang) en el contexto de la relatividad general. Aunque no es una verdadera teoría de la gravedad cuántica, el modelo contiene elementos tanto de la teoría cuántica como de la relatividad general.

Además de no predecir una singularidad del Big Bang, el nuevo modelo tampoco predice una singularidad Big Crunch. En la relatividad general, un posible destino del Universo es que comienza a contraerse hasta que se derrumba sobre sí mismo en una gran crisis y se convierte en un punto infinitamente denso, una vez más.

Ali y Das explican en su artículo que su modelo evita singularidades debido a una diferencia clave entre geodesias clásicas y trayectorias de Bohm. Las geodesias clásicas finalmente se cruzan entre sí, y los puntos en los que convergen son singularidades. En contraste, las trayectorias de Bohm nunca se cruzan entre sí, por lo que las singularidades no aparecen en las ecuaciones.

En términos cosmológicos, los científicos explican que las correcciones cuánticas pueden ser consideradas como una constante cosmológica (sin la necesidad de la energía oscura) y un plazo de radiación. Estos términos mantienen el Universo en un tamaño finito, y por lo tanto le dan una edad infinita. Los términos también hacen predicciones que coinciden estrechamente con las observaciones actuales de la constante cosmológica y la densidad del Universo.

En términos físicos, el modelo describe el Cosmos como lleno de un fluido cuántico. Los científicos proponen que este líquido podría estar compuesto por partículas hipotéticas denominadas gravitones, sin masa, que median en la fuerza de gravedad. Si existen, se cree que los gravitones juegan un papel clave en una teoría de la gravedad cuántica.

Logran la medida más precisa de la expansión del Universo


ABC.es

  • Astrónomos han empleado 140.000 cuásares distantes para medir cómo se expandió el Cosmos en el momento en que su edad era la cuarta parte de la actual
Logran la medida más precisa de la expansión del Universo

universidad de barcelona Concepción artística de cómo BOSS utiliza los cuásares para medir el Universo distante

Un equipo de astrónomos del proyecto internacional Sloan Digital Sky Survey, en el que participan dos españoles, ha empleado 140.000 cuásares distantes para medir el ritmo de expansión del Universo en el momento en que su edad era la cuarta parte de la actual (el Universo tiene ahora 13.800 millones de años). El trabajo establece la medida más precisa de ese ritmo a lo largo de los últimos 13.000 millones de años, algo importante para dilucidar las propiedades de la energía oscura, responsable de la actual aceleración del ritmo de expansión.

El Baryons Oscillation Spectroscopic Survey (BOSS), que es uno de los principales programas de observación del tercer proyecto Sloan Digital Sky Survey (SDSS-III), es pionero en la técnica para medir la estructura del Universo lejano a partir de la observación de los cuásares, los objetos más brillantes del Cosmos que permiten detectar la materia intergaláctica, aquella que ha quedado distribuida por el espacio entre las galaxias. Las nuevas observaciones basadas en BOSS se han presentado durante la reunión de la Sociedad Americana de Física, celebrada recientemente en la ciudad de Savannah (Estados Unidos).

La luz emitida por los cuásares, unos objetos astronómicos que pueden observarse a miles de millones de años luz de la Tierra gracias a su gran luminosidad, atraviesa nubes de gas de materia intergaláctica, compuesta mayoritariamente por hidrógeno. El análisis de los patrones de absorción del hidrógeno que intercepta la luz de los cuásares en su viaje hacia nosotros es una nueva metodología para medir la estructura a gran escala del Universo.

Dos metodologías

Los resultados de la investigación combinan dos metodologías diferentes basadas en el uso de los cuásares y el gas intergaláctico para medir el ritmo de expansión del Universo. El primer análisis, llevado a cabo por Andreu Font Ribera, doctorado por la Universidad de Barcelona y ahora investigador posdoctoral en el Laboratorio Nacional Lawrence Berkeley (LBNL) de Estados Unidos, y sus colaboradores, compara la distribución espacial de cuásares con la del gas hidrógeno para medir distancias en el Universo.

El segundo trabajo, liderado por Timothée Delubac, del Centro de Saclay (Francia), se centra en los patrones de absorción del gas hidrógeno para medir la distribución de masa en el Universo joven. Los dos análisis del equipo BOSS establecen que hace 10.800 millones de años, el Universo —que entonces tenía una edad de sólo 3.000 millones de años— se expandía a lo largo de cada uno de los tres ejes del espacio a un ritmo de un 1% por cada 44 millones de años.

Tal como comenta el profesor Jordi Miralda, investigador ICREA del Instituto de Ciencias del Cosmos de la UB (ICCUB), «la expansión del Universo significa que las galaxias se alejan unas de otras, como si el espacio se estirara como una goma por todas partes». Asimismo, «cuando observamos galaxias o nubes de gas muy lejanas, los vemos en el pasado del universo debido al tiempo que tarda la luz para llegar hasta nosotros».

«Si miramos el Universo en su pasado, cuando las galaxias estaban tres veces más cerca de lo que están hoy en día, vemos que un par de galaxias separadas por un millón de años luz entre sí se alejaban una de la otra a una velocidad de 68 kilómetros por segundo a medida que se expandía el Universo», detalla el experto Andreu Font Ribera.

«Hemos medido el ritmo de expansión del Universo lejano con una precisión sin precedentes del 2%», explica Delubac. Conocer los parámetros de expansión del Universo a lo largo de su evolución es clave para determinar la naturaleza de la energía oscura que provoca la expansión acelerada del Universo durante los últimos 6.000 millones de años. «La medida de la expansión del Universo cuando su edad era solo la cuarta parte de la actual nos da una referencia para compararla con las medidas de expansión de la época más reciente, en que la energía oscura se ha establecido como fuerza dominante», afirma el investigador.

Ondas acústicas del Universo

Para determinar el ritmo de expansión del Universo, BOSS ha utilizado las llamadas oscilaciones acústicas de bariones (BAO), que son ondas de sonido que provienen del universo primitivo y que dejaron una huella en la forma en que la materia está distribuida por el espacio. Esta huella es visible en la distribución de galaxias, cuásares e hidrógeno intergaláctico en el Cosmos.

Según explica Jordi Miralda, «estas ondas de sonido se propagaban a través de la materia intergaláctica y, cuando el Universo tenía solo unos 400.000 años de edad, dejaron un exceso de materia a una distancia fija y conocida de los lugares donde más tarde se formaron galaxias, cuásares, y nubes de gas». «Es como si alrededor de cada objeto hubiera un anillo de tamaño conocido donde hay un exceso de materia, y eso es lo que permite medir el ritmo de expansión del universo con gran precisión».

Descubren la mayor estructura de todo el Universo: 4.000 millones de años luz


ABC.es

Es tan gigantesco que llega incluso a desafiar el Principio Cosmológico, una de las principales hipótesis de la Astronomía

Descubren la mayor estructura de todo el Universo: 4.000 millones de años luz

Roger Clowes | Fragmento del Gran Grupo de Cuásares localizado por Roger Clowes y su equipo

La que es sin duda la mayor estructura del Universo acaba de ser descubierta por un grupo internacional de astrónomos, dirigidos por investigadores de la Universidad de Central Lancashire (UCLan). Se trata de un LQG (Large Quasar Group o Gran Grupo de Cuásares), y es tan grande que se necesitaría viajar en una nave a la velocidad de la luz durante 4.000 millones de años para recorrerlo de punta a punta. El equipo ha publicado su hallazgo en la revista mensual de la Royal Astronomical Society.

Los cuásares son nucleos muy activos de galaxias formadas durante la juventud del Universo y que durante “breves” periodos (que duran entre 10 y 100 millones de años), se vuelven extraordinariamente brillantes, y por lo tanto visibles a enormes distancias.

Desde la década de los ochenta del pasado siglo se sabe que los cuásares tienden a agruparse en “racimos” o estructuras de gran tamaño, formando grupos que los astrónomos conocen como LGQs.

Pero el LGQ identificado por Roger Clowes y sus colegas es tan enorme que llega incluso a desafiar el Principio Cosmológico, una de las principales hipótesis de la Astronomía que afirma que si se contempla el Universo a una escala lo suficientemente grande, éste aparece igual en todas partes, sin que importe desde dónde se realice la observación. El Principio Cosmológico, del que dependen las modernas teorías sobre el Universo, es asumido como cierto aunque jamás ha podido ser demostrado “más allá de una duda razonable”.

“Aunque es difícil comprender la magnitud de este LQG -afirma Clowes-, podemos decir, definitivamente, que se trata de la estructura más grande jamás vista en todo el universo”.

Para hacerse una idea de la magnitud de esta estructura, basta pensar que la Vía Láctea, nuestra galaxia, está a unos dos millones y medio de años luz de la galaxia más próxima, Andrómeda, lo que equivale a 0,75 megaparsecs. Un megaparsec (Mpc) es igual a 3,26 millones de años luz.

Un cúmulo de galaxias como el nuestro, formado por unos veinte miembros, puede medir dos o tres Mgp, y los LQC, mucho mayores, pueden llegar a tener hasta 200 Mgp (esto es, unos 650 millones de años luz) de diámetro.

Pero para que se cumpla el Principio Cosmológico y según predicen las teorías más reconocidas, no debería de haber en todo el Universo estructuras mayores de 370 Mpc (1.200 millones de años luz). Pero el grupo de cuásares encontado por Clowes y sus colegas tiene una dimensiones mucho mayores: 1.200 megaparsecs o, lo que es lo mismo, 4.000 millones de años luz, mil seiscientas veces más que la distancia que nos separa de Andrómeda.

“Todo esto -afirma Clowes- resulta muy emocionante, y también muy importante, ya que va en contra de nuestra comprensión actual de las escalas del Universo”.

“Incluso viajando a la velocidad de la luz -prosigue el investigador- se tardarían 4.000 millones de años en cruzarla. Y esto es relevante no solo a causa de su tamaño, sino porque desafía el Principio Cosmológico, cuya validez no se discute desde los tiempos de Einstein. Nuestro equipo ha estado buscando otros casos que reafirmen nuestro hallazgo, y vamos a seguir investigando estos fenómenos tan fascinantes”.

La explosión más grande provocada por un agujero negro


El Mundo

Recreación artística de la explosión descubierta. | ESO

El Observatorio Austral Europeo (ESO, por sus siglas en inglés) ha descubierto la explosión más grande provocada por un agujero negro que se ha observado hasta ahora. Utilizando el telescopio VLT (Very Large Telescope), un equipo de astrónomos ha detectado un cuásar con la emisión más energética detectada hasta el momento, al menos cinco veces más potente que las que se han observado hasta hoy.

Los cuásares son los intensos centros luminosos de las galaxias distantes alimentados por enormes agujeros negros. Aunque algunos cuásares destacan por atraer material, muchos eyectan ingentes cantidades de material hacia sus galaxias anfitrionas, y estos chorros juegan un papel muy importante en la evolución galáctica. Pero, hasta ahora, los chorros de cuásares que se habían observado, no eran tan potentes como predecían los teóricos.

“La velocidad a la que es expulsada esta energía por la enorme masa de material eyectado desde este cuásar (conocido como SDSS J1106+1939) es, al menos, equivalente a dos millones de millones de veces la potencia que emana del Sol. A su vez, implica que es cien veces más potente que la producción energética total de nuestra galaxia, la Vía Láctea, — es una eyección verdaderamente monstruosa,” afirma el investigador principal del equipo, Nahum Arav (Virginia Tech, EEUU).

Numerosas simulaciones teóricas sugieren que el impacto de estas eyecciones en las galaxias del entorno puede resolver varios enigmas de la cosmología moderna, incluyendo cómo la masa de una galaxia está asociada a la masa de su agujero negro central, y por qué hay tan pocas galaxias grandes en el universo. Sin embargo, hasta ahora no se sabía con certeza si los cuásares eran capaces de producir chorros lo suficientemente potentes como para producir estos fenómenos.

Las eyecciones descubiertas se encuentran a unos años mil años luz de distancia del agujero negro que los genera. El análisis del equipo muestra que el cuásar pierde al año una masa de, aproximadamente, 400 veces la masa del Sol, moviéndose a una velocidad de unos 8.000 kilómetros por segundo.

El cuásar ha sido captado gracias al instrumento X-shooter del telescopio VLT que ha permitido obtener con el máximo detalle las imágenes. “Sin el espectrógrafo X-shooter del VLT no podríamos haber obtenido estos datos de alta calidad, que nos han permitido hacer el descubrimiento”, afirma Benoit Borguet (Virginia Tech, EEUU), autor principal del nuevo artículo. “Por primera vez, pudimos explorar la región que rodea al cuásar con mucho detalle“.

Al tratarse de típicos ejemplos de un tipo de cuásar muy común, pero poco estudiado, estos resultados podrían aplicarse a cuásares luminosos de todo el universo. Borguet y sus colegas exploran actualmente una docena de cuásares similares para ver si, efectivamente, esto es así. El Universo podría estar lleno de estos monstruosos agujeros negros.

Ciencia de ciencia ficción


El Pais

  • Una fundación privada financia la investigación más atrevida sobre universos paralelos, extraterrestres inteligentes y el cosmos antes del Big Bang
 

Los multiversos -por oposición al universo- son uno de los campos de investigación. / cordon press

¿primitivo del universo? ¿Es nuestro cosmos único o solo una parte de uno mucho mayor? ¿Cuál es el origen de la complejidad? ¿Estamos solos en el universo, o hay otras formas de vida y de inteligencia más allá del sistema solar? Con estas ambiciosas preguntas fundamentales que para muchos van más allá de la frontera de la ciencia y casi entran en el terreno de la ciencia ficción (la frontera está en la verificación), la Fundación Templeton ha retado a expertos de todo el mundo. No hay que olvidar que la labor de esta fundación filantrópica británica ha sido cuestionada a menudo en la comunidad científica por su enfoque religioso de cuestiones científicas (en 2012, el Dalái Lama recibe el Premio Templeton), pero este año, con tres millones de euros de subvención, atrae a especialistas de alto nivel.

La convocatoria de las cuatro grandes preguntas ha seleccionado las mejores 20 propuestas por su interés, calidad y oportunidad, señala la fundación, asignando a cada una de las ideas elegidas cantidades de hasta 230.000 euros para los trabajos teóricos y hasta 385.000 los experimentales, en dos años.

Se trata de apoyar la investigación científica imaginativa, rigurosa y creativa, pero el reglamento de la convocatoria excluye áreas de trabajo que se financian normalmente en los programas convencionales de investigación, como las propiedades de la misteriosa energía oscura del universo, la búsqueda de nuevos entes candidatos a ser la materia oscura o las teorías dominantes de supercuerdas y de gravitación cuántica, consideradas áreas de vanguardia de la física y la cosmología actuales. La Fundación Templeton quiere ir un poco más allá y los científicos reciben de ella jugosas cantidades muy bienvenidas para su trabajo, aunque tengan que desviar parte de su esfuerzo de su línea de investigación formal.

“Puede que haya civilizaciones tecnológicas que se comuniquen con sus sondas espaciales distribuidas por toda la galaxia mediante haces láser, ya sean de luz visible o de infrarrojo”, explica uno de los científicos seleccionados, Geoof Marcy, experto mundial en la búsqueda de planetas extrasolares. “La luz láser”, continúa, “puede ser detectada desde otra civilización avanzada porque toda su potencia está concentrada en un fino haz y la luz es de un color, o frecuencia, específico”. Marcy recibe 200.000 dólares (154.000 euros) de esta peculiar convocatoria con un doble objetivo: por un lado, utilizará los grandes telescopios Keck (en Hawai) para tomar mil espectros de luz de estrellas con planetas y buscar esos haces de láser. Además, escarbará en los archivos de ese observatorio buscando indicios de civilizaciones suficientemente avanzadas como para haber construido enormes centrales eléctricas solares en órbita.

El físico teórico Raphael Bouso, de la Universidad de California en Berkeley (UCB), como Marcy, recibirá 125.000 dólares (96.300 euros) en dos años, para indagar formas de detección de otros universos distintos del nuestro y tratar de comprender cómo serían esos multiversos. “Estamos dando los primeros pasos en esta teoría del multiverso, pero es una propuesta plausible muy seria”, dice Bouso. En un comunicado de la UCB, donde presenta a sus dos científicos seleccionados, señala, que son para “explorar la frontera entre la ciencia y la ciencia ficción”.

El truco para que una convocatoria de este tipo, tan peculiar, se centre en trabajos científicos y no en meras ideas alocadas está en fijar los parámetros de trabajo. “Los astrónomos tienen un buen conocimiento de cómo el universo ahora observable ha evolucionado desde poco después del Big Bang. ¿Pero, qué pasó antes? Varias ideas científicas y teorías de génesis cósmica se han propuesto en las últimas décadas”, recuerda, por ejemplo, la presentación de la primera pregunta propuesta a los científicos, la referente a los estadios primitivos del cosmos. “Aunque la mayoría de estas teorías pueden considerarse estrictamente ejercicios teóricos, los cosmólogos están planteando vías para probar algunas de ellas en condiciones de baja energía”. Otra indicación es investigar si “la idea del multiverso es meramente metafísica”, para acabar preguntando si algunas de estas cuestiones estarán eternamente más allá del alcance de la ciencia.

Muchos científicos han recogido el guante de estos retos. Parampreet Singh (Universidad de Luisiana) recibirá la financiación Templeton para explorar la génesis del espacio-tiempo utilizando supercomputadoras; David Spergel (Universidad de Princeton) trabajará sobre el multiverso; Marcelo Gleiser (Dartmouth College) se dedicará a la complejidad emergente en el origen del universo; el título del proyecto de Lucianne Walkowicz (Universidad de Princeton) es Faros estelares, decodificación de firmas de civilizaciones avanzadas en fotometría estelar de precisión, y Jonathan I. Lunine (Universidad de Cornell) buscará vida en entornos exóticos como test estricto de la ubicuidad cósmica de la vida. Son algunos de los planes de trabajo seleccionados.

“Con estas asignaciones, el programa quiere apoyar la investigación atrevida, innovadora con potencial de expandir las fronteras y catalizar descubrimientos rompedores, así como inspirar a los estudiantes para que persigan el conocimiento científico y lleguen a ser pensadores originales sobre las grandes preguntas y visionarios”, dice Donald York, profesor de Astronomía y Astrofísica en la Universidad de Chicago, responsable de organizar este programa este año con ocasión del centenario de John Templeton.

Además de los proyectos de los científicos, el programa incluye una categoría para estudiantes: 21 reciben galardones (por un total de 200.000 dólares) por sus ensayos sobre dos temas: ¿cuál es el origen de la complejidad en el universo? y ¿estamos solos en el universo o hay otras formas de vida y de inteligencia más allá del sistema solar? Las 20 propuestas científicas seleccionadas más los trabajos de los estudiantes ganadores se presentan el viernes y sábado próximos en una conferencia que se celebra en el Instituto Franklin de Filadelfia.

“La fijación humana con la idea de los ovnis y los extraterrestres es una búsqueda de sentido, y de esperanza en que, a través del discurso, el pensamiento y la cooperación entre nuestra propia especie, podemos llegar a tener el placer de conversar con otra diferente. Tal vez el aparente silencio de los cielos representa no la ausencia, sino un reposado impulso hacia el pensamiento, el trabajo y la unidad para encontrar las respuestas a las preguntas más difíciles por nosotros mismos”, ha escrito Zequn Li, uno de los ganadores, con su ensayo Hablando a las estrellas.