Logran la medida más precisa de la expansión del Universo


ABC.es

  • Astrónomos han empleado 140.000 cuásares distantes para medir cómo se expandió el Cosmos en el momento en que su edad era la cuarta parte de la actual
Logran la medida más precisa de la expansión del Universo

universidad de barcelona Concepción artística de cómo BOSS utiliza los cuásares para medir el Universo distante

Un equipo de astrónomos del proyecto internacional Sloan Digital Sky Survey, en el que participan dos españoles, ha empleado 140.000 cuásares distantes para medir el ritmo de expansión del Universo en el momento en que su edad era la cuarta parte de la actual (el Universo tiene ahora 13.800 millones de años). El trabajo establece la medida más precisa de ese ritmo a lo largo de los últimos 13.000 millones de años, algo importante para dilucidar las propiedades de la energía oscura, responsable de la actual aceleración del ritmo de expansión.

El Baryons Oscillation Spectroscopic Survey (BOSS), que es uno de los principales programas de observación del tercer proyecto Sloan Digital Sky Survey (SDSS-III), es pionero en la técnica para medir la estructura del Universo lejano a partir de la observación de los cuásares, los objetos más brillantes del Cosmos que permiten detectar la materia intergaláctica, aquella que ha quedado distribuida por el espacio entre las galaxias. Las nuevas observaciones basadas en BOSS se han presentado durante la reunión de la Sociedad Americana de Física, celebrada recientemente en la ciudad de Savannah (Estados Unidos).

La luz emitida por los cuásares, unos objetos astronómicos que pueden observarse a miles de millones de años luz de la Tierra gracias a su gran luminosidad, atraviesa nubes de gas de materia intergaláctica, compuesta mayoritariamente por hidrógeno. El análisis de los patrones de absorción del hidrógeno que intercepta la luz de los cuásares en su viaje hacia nosotros es una nueva metodología para medir la estructura a gran escala del Universo.

Dos metodologías

Los resultados de la investigación combinan dos metodologías diferentes basadas en el uso de los cuásares y el gas intergaláctico para medir el ritmo de expansión del Universo. El primer análisis, llevado a cabo por Andreu Font Ribera, doctorado por la Universidad de Barcelona y ahora investigador posdoctoral en el Laboratorio Nacional Lawrence Berkeley (LBNL) de Estados Unidos, y sus colaboradores, compara la distribución espacial de cuásares con la del gas hidrógeno para medir distancias en el Universo.

El segundo trabajo, liderado por Timothée Delubac, del Centro de Saclay (Francia), se centra en los patrones de absorción del gas hidrógeno para medir la distribución de masa en el Universo joven. Los dos análisis del equipo BOSS establecen que hace 10.800 millones de años, el Universo —que entonces tenía una edad de sólo 3.000 millones de años— se expandía a lo largo de cada uno de los tres ejes del espacio a un ritmo de un 1% por cada 44 millones de años.

Tal como comenta el profesor Jordi Miralda, investigador ICREA del Instituto de Ciencias del Cosmos de la UB (ICCUB), «la expansión del Universo significa que las galaxias se alejan unas de otras, como si el espacio se estirara como una goma por todas partes». Asimismo, «cuando observamos galaxias o nubes de gas muy lejanas, los vemos en el pasado del universo debido al tiempo que tarda la luz para llegar hasta nosotros».

«Si miramos el Universo en su pasado, cuando las galaxias estaban tres veces más cerca de lo que están hoy en día, vemos que un par de galaxias separadas por un millón de años luz entre sí se alejaban una de la otra a una velocidad de 68 kilómetros por segundo a medida que se expandía el Universo», detalla el experto Andreu Font Ribera.

«Hemos medido el ritmo de expansión del Universo lejano con una precisión sin precedentes del 2%», explica Delubac. Conocer los parámetros de expansión del Universo a lo largo de su evolución es clave para determinar la naturaleza de la energía oscura que provoca la expansión acelerada del Universo durante los últimos 6.000 millones de años. «La medida de la expansión del Universo cuando su edad era solo la cuarta parte de la actual nos da una referencia para compararla con las medidas de expansión de la época más reciente, en que la energía oscura se ha establecido como fuerza dominante», afirma el investigador.

Ondas acústicas del Universo

Para determinar el ritmo de expansión del Universo, BOSS ha utilizado las llamadas oscilaciones acústicas de bariones (BAO), que son ondas de sonido que provienen del universo primitivo y que dejaron una huella en la forma en que la materia está distribuida por el espacio. Esta huella es visible en la distribución de galaxias, cuásares e hidrógeno intergaláctico en el Cosmos.

Según explica Jordi Miralda, «estas ondas de sonido se propagaban a través de la materia intergaláctica y, cuando el Universo tenía solo unos 400.000 años de edad, dejaron un exceso de materia a una distancia fija y conocida de los lugares donde más tarde se formaron galaxias, cuásares, y nubes de gas». «Es como si alrededor de cada objeto hubiera un anillo de tamaño conocido donde hay un exceso de materia, y eso es lo que permite medir el ritmo de expansión del universo con gran precisión».

Detectan por primera vez ondas procedentes del ‘Big Bang’


El Confidencial

Astrónomos del Centro de Astrofísica Harvard-Smithsoniano (CFA) han anunciado este lunes que se han detectado por primera vez las ondas gravitacionales que recorrieron el Universo primitivo, durante un período explosivo de crecimiento llamado inflacionario. Se trata de la confirmación más importante lograda hasta ahora acerca de las teorías de la inflación cósmica, según las cuales el cosmos se expandía por 100 billones de billones de veces, de manera vertiginosa.

Los hallazgos fueron realizados con la ayuda del BICEP2, un telescopio situado en el Polo Sur que escanea el cielo en frecuencias de microondas, donde recoge la energía fósil del Big Bang.

El Universo actual surgió tras un evento conocido como el Big Bang, que tuvo lugar hace 13.800 millones de años. Momentos más tarde, el propio espacio comenzó a expandirse de manera exponencial en un episodio conocido como inflación. Los signos reveladores de este capítulo en la historia temprana del Universo están impresos en el cielo, en un resplandor reliquia llamado el fondo cósmico de microondas.

Es ahí donde los investigadores han buscado durante mucho tiempo la evidencia más directa de esta inflación en forma de ondas gravitacionales, que aprietan y estiran el espacio, y que ahora han logrado detectar.

“Pequeñas fluctuaciones cuánticas fueron amplificadas a tamaños enormes por la expansión inflacionaria del Universo. Sabemos que esto produce otro tipo de ondas llamadas ondas de densidad, pero queríamos probar si también se producen ondas gravitacionales”, ha explicado uno de los responsables del trabajo, Jamie Bock.

Polarización en ‘modo B’

Las ondas gravitacionales están producidas por un modelo característico de luz polarizada, llamado polarización “en modo B”. La luz puede polarizarse por la dispersión de las superficies, en el caso del fondo cósmico de microondas, la luz es dispersada por electrones para convertirse en poco polarizada.

El equipo BICEP2 asumió el reto de detectar el modo B de polarización al reunir los mejores expertos en la materia, el desarrollo de una tecnología revolucionaria y el viaje al mejor sitio de observación de la Tierra: el Polo Sur.

Como resultado de los experimentos llevados a cabo desde 2006, el equipo ha sido capaz de producir pruebas concluyentes de esta señal en modo B, y con ella, la evidencia, hasta ahora, más fuerte que existe sobre la existencia de la inflación cósmica.

El nuevo rostro del 'Big Bang' ('New Scientist')El nuevo rostro del ‘Big Bang’ (‘New Scientist’)

Los expertos han indicado que la clave de su éxito ha sido el uso de detectores superconductores nuevos. Los superconductores son materiales que, cuando se enfrían, permiten que la corriente eléctrica fluya libremente, sin resistencia.

“Nuestra tecnología combina las propiedades de la superconductividad con estructuras pequeñas que sólo se pueden ver con un microscopio. Estos dispositivos se fabrican con el mismo proceso de micro-mecanizado que los sensores de los teléfonos móviles”, ha explicado el experto de la NASA Anthony Turner.

Una señal débil

La señal en modo B es “extremadamente débil”, según han señalado los científicos. Con el fin de obtener la sensibilidad necesaria para detectar la señal de polarización, el equipo ha desarrollado una gama única de detectores múltiples, similar a los píxeles de las cámaras digitales modernas, pero con la capacidad adicional de detectar la polarización. El sistema detector conjunto funciona a sólo 0,45ºC centígrados por encima de la temperatura más baja posible, el cero absoluto.

Los expertos han indicado que la clave de su éxito ha sido el uso de detectores superconductores nuevos. Los superconductores son materiales que, cuando se enfrían, permiten que la corriente eléctrica fluya libremente, sin resistencia.”Esta medida extremadamente desafiante requiere una arquitectura completamente nueva”, ha indicado el autor principal del hallazgo, John Kovac. “Nuestro enfoque es como tomar una cámara y la construcción de ésta en una placa de circuito impreso”, ha añadido.

El experimento BICEP2 utiliza 512 detectores, que aceleraron observaciones del fondo cósmico de microondas por 10 veces en mediciones anteriores del equipo. Su nuevo experimento, ya la realización de observaciones, utiliza 2.560 detectores.

Descubren la mayor estructura de todo el Universo: 4.000 millones de años luz


ABC.es

Es tan gigantesco que llega incluso a desafiar el Principio Cosmológico, una de las principales hipótesis de la Astronomía

Descubren la mayor estructura de todo el Universo: 4.000 millones de años luz

Roger Clowes | Fragmento del Gran Grupo de Cuásares localizado por Roger Clowes y su equipo

La que es sin duda la mayor estructura del Universo acaba de ser descubierta por un grupo internacional de astrónomos, dirigidos por investigadores de la Universidad de Central Lancashire (UCLan). Se trata de un LQG (Large Quasar Group o Gran Grupo de Cuásares), y es tan grande que se necesitaría viajar en una nave a la velocidad de la luz durante 4.000 millones de años para recorrerlo de punta a punta. El equipo ha publicado su hallazgo en la revista mensual de la Royal Astronomical Society.

Los cuásares son nucleos muy activos de galaxias formadas durante la juventud del Universo y que durante “breves” periodos (que duran entre 10 y 100 millones de años), se vuelven extraordinariamente brillantes, y por lo tanto visibles a enormes distancias.

Desde la década de los ochenta del pasado siglo se sabe que los cuásares tienden a agruparse en “racimos” o estructuras de gran tamaño, formando grupos que los astrónomos conocen como LGQs.

Pero el LGQ identificado por Roger Clowes y sus colegas es tan enorme que llega incluso a desafiar el Principio Cosmológico, una de las principales hipótesis de la Astronomía que afirma que si se contempla el Universo a una escala lo suficientemente grande, éste aparece igual en todas partes, sin que importe desde dónde se realice la observación. El Principio Cosmológico, del que dependen las modernas teorías sobre el Universo, es asumido como cierto aunque jamás ha podido ser demostrado “más allá de una duda razonable”.

“Aunque es difícil comprender la magnitud de este LQG -afirma Clowes-, podemos decir, definitivamente, que se trata de la estructura más grande jamás vista en todo el universo”.

Para hacerse una idea de la magnitud de esta estructura, basta pensar que la Vía Láctea, nuestra galaxia, está a unos dos millones y medio de años luz de la galaxia más próxima, Andrómeda, lo que equivale a 0,75 megaparsecs. Un megaparsec (Mpc) es igual a 3,26 millones de años luz.

Un cúmulo de galaxias como el nuestro, formado por unos veinte miembros, puede medir dos o tres Mgp, y los LQC, mucho mayores, pueden llegar a tener hasta 200 Mgp (esto es, unos 650 millones de años luz) de diámetro.

Pero para que se cumpla el Principio Cosmológico y según predicen las teorías más reconocidas, no debería de haber en todo el Universo estructuras mayores de 370 Mpc (1.200 millones de años luz). Pero el grupo de cuásares encontado por Clowes y sus colegas tiene una dimensiones mucho mayores: 1.200 megaparsecs o, lo que es lo mismo, 4.000 millones de años luz, mil seiscientas veces más que la distancia que nos separa de Andrómeda.

“Todo esto -afirma Clowes- resulta muy emocionante, y también muy importante, ya que va en contra de nuestra comprensión actual de las escalas del Universo”.

“Incluso viajando a la velocidad de la luz -prosigue el investigador- se tardarían 4.000 millones de años en cruzarla. Y esto es relevante no solo a causa de su tamaño, sino porque desafía el Principio Cosmológico, cuya validez no se discute desde los tiempos de Einstein. Nuestro equipo ha estado buscando otros casos que reafirmen nuestro hallazgo, y vamos a seguir investigando estos fenómenos tan fascinantes”.

Un astrofísico de Harvard sugiere que pudo existir vida justo después del Big Bang


ABC.es

  • Cree que durante un breve período de tiempo pudieron formarse planetas rocosos capaces de albergar agua líquida
Un astrofísico de Harvard sugiere que pudo existir vida justo después del Big Bang

Archivo | La vida pudo haberse formado en planetas rocosos solo 15 millones de años después del Big Bang

Abraham Loeb, astrofísico de la Universidad de Harvard en Cambridge, Massachussetts (EE.UU.) sugiere en una investigación teórica publicada en arXiv que la vida podría haber existido justo después del Big Bang, la gran explosión que, según la teoría generalmente aceptada, dio origen al Universo. Los cálculos del científico apuntan a que el agua líquida, un requisito indispensable para la vida tal y como la conocemos, pudo haberse formado en planetas rocosos solo 15 millones de años después del estallido.

Hoy en día, la temperatura del fondo cósmico de microondas, el resplandor del Big Bang, es de solo 2,7º kelvin , pero en sus comienzos, apunta Loeb, podría haberse mantenido mucho más caliente, a unos 300ºkelvin. En ese momento, en los lugares del Universo donde la materia es excepcionalmente densa, podrían haberse formado estrellas masivas, de corta vida, que habrían enriquecido el ambiente con elementos más pesados necesarios para hacer planetas. Según el astrofísico, durante 2 millones o 3 millones de años todos los planetas rocosos habrían sido capaces de mantener agua líquida, independientemente de la distancia a la que se encontraran de su estrella. «Todo el Universo fue una vez una incubadora para la vida», afirma Loeb en la web de la revista Nature. Lo llama «la época habitable».

Según Loeb, en esa época la materia era tan densa que incluso si la energía del vacío hubiera sido un millón de veces más fuerte, no habría impedido la formación de estrellas y planetas rocosos, y el surgimiento de la vida.

Nature ha preguntado a varios científicos qué les parece la propuesta de su colega de Harvard, y las respuestas varían. Christopher Jarzynski, biofísico de la Universidad de Maryland, pone en duda que la vida hubiera podido existir en una forma uniforme en un Universo cálido. Alexander Vilenkin cosmólogo de la Universidad de Tufts en Medford, Massachusetts, asegura que unos pocos millones de años es un tiempo demasiado corto para producir vida inteligente. Sin embargo, Freeman Dyson, físico en el Instituto de Estudios Avanzados de Princeton, Nueva Jersey, apunta que la vida podría ser más adaptable de lo que pensamos.

Una supernova explotará y será visible desde la Tierra en 50 años


ABC.es

  • Para los científicos, supone una oportunidad única para presenciar la muerte de una estrella desde el principio. El resto quizás podamos de contemplarla a simple vista

Una supernova explotará y será visible desde la Tierra en 50 años

Archivo ABC | Recreación de la explosión de una supernova

Astrónomos de la Universidad Estatal de Ohio han calculado las probabilidades de que, en algún momento durante los próximos 50 años, una supernova de nuestra galaxia sea visible desde la Tierra. Y han llegado a la feliz conclusión de que hay un 100% de probabilidades de que esa supernova sea visible para los telescopios en forma de radiación infrarroja y un 20% de que el espectáculo estelar pueda contemplarse a simple vista en el cielo nocturno. Lo cuentan en la revista The Astrophysical Journal y su estudio está disponible en Arxiv.org.

El hallazgo, según sus autores, supone una gran noticia para los astrónomos, que disponen de cámaras de infrarrojos de alta potencia para apuntar al cielo en cualquier momento. El estudio sugiere que tienen una sólida oportunidad de hacer algo que nunca se ha hecho antes: detectar una supernova lo suficientemente rápido como para presenciar lo que sucede en el comienzo mismo de la muerte de una estrella. Una estrella masiva se convierte en supernova en el momento en que agota todo su combustible nuclear y su núcleo se colapsa, justo antes de que explote violentamente y lance la mayor parte de su masa al espacio.

«Vemos todas estas estrellas convertirse en supernovas en otras galaxias , y no entendemos completamente cómo sucede. Creemos que lo sabemos, pero eso no es verdad al 100%», dice Christopher Kochanek, profesor de astronomía en la Universidad de Ohio. «Hoy en día, las tecnologías han avanzado hasta el punto de que podemos aprender muchísimo más sobre supernovas si podemos pillar la siguiente en nuestra galaxia y estudiarla con todas las herramientas disponibles», explica.

El estudio de las supernovas en la Vía Láctea es posible gracias a que los astrónomos tienen detectores sensibles de neutrinos (partículas emitidas por el núcleo de una estrella en colapso ) y ondas gravitacionales (creadas por las vibraciones del núcleo de la estrella), que puede encontrar cualquier supernova en nuestra galaxia. La pregunta es si en realidad podemos ver la luz de la supernova, ya que vivimos en una galaxia llena de polvo, partículas de hollín que Kochanek compara con observar el espacio a través de los gases emanados por un camión, que absorben la luz y podrían ocultar una supernova de nuestra vista.

«Cada pocos días, tenemos la oportunidad de observar supernovas fuera de nuestra galaxia», dice Scott Adams, miembro del equipo investigador. «Pero solo hay algunas cosas que puedes aprender de ellas, mientras que una supernova galáctica nos mostraría mucho más. Nuestros detectores de neutrinos y detectores de ondas gravitacionales solo son lo suficientemente sensibles como para tomar medidas dentro de nuestra galaxia, donde creemos que una supernova ocurre solo una vez o dos veces por siglo».

Nuevo detector

En un escenario ideal, los detectores de neutrinos como el Super- Kamiokande (Super-K) en Japón podrían hacer sonar la alarma en el momento que detectan los neutrinos, e indicar la dirección de donde vengan las partículas. Entonces, los detectores infrarrojos podrían apuntar al lugar casi de inmediato, para capturar la supernova antes de que comience a brillar. Los observatorios de ondas gravitacionales podrían hacer lo mismo.

Pero como no todos los neutrinos vienen de supernovas -algunos llegan de reactores nucleares, la atmósfera de la Tierra o el Sol- es posible que el detector no reconozca la diferencia. «Necesitamos una manera de decir inmediatamente que la explosión se debe a una supernova», dice John Beacom , profesor de física y astronomía y director del Centro de Cosmología y Física de Astro- partículas en el estado de Ohio.

Expertos en neutrinos y coautores del artículo han construido un modelo a escala de un tipo especial de detector de neutrinos en una nueva cueva subterránea en Japón. El nuevo detector, que llaman Egads (Evaluación de acción de gadolinio en sistemas de detección) pesa 200 toneladas -mucho menor que las 50.000 toneladas de Super-K-, y se compone de un tanque de agua ultrapura. El agua se enriquece con una pequeña cantidad del elemento de gadolinio, que ayuda a registrar los neutrinos de supernova de una manera especial. Cuando un neutrino de una supernova de la Vía Láctea entra en el tanque, puede colisionar con las moléculas de agua y liberar energía, junto con algunos neutrones. El gadolinio tiene una gran afinidad por los neutrones y los absorberá y volver a emitir energía propia. El resultado sería una señal de detección seguida por otra una pequeña fracción de segundo más tarde, una señal de «latido» en el interior del depósito para cada neutrino detectado. Según los investigadores, esta señal permitirá a los científicos hacer anuncios de detecciones de supernovas más seguros y oportunos.

A simple vista

Para aquellos de nosotros que esperamos ver una supernova de la Vía Láctea con nuestros propios ojos, las posibilidades son más bajas y dependen de nuestra latitud en la Tierra. La última vez que ocurrió fue en 1604, cuando Johannes Kepler descubrió una unos 20.000 años luz de distancia en la constelación de Ofiuco. Se encontraba en el norte de Italia en ese momento .

Los astrónomos creen que la probabilidad de que una supernova galáctica sea visible a simple vista desde algún lugar en la Tierra en los próximos 50 años es aproximadamente del 20 a 50%. Los habitantes del hemisferio sur tienen más probabilidades, ya que pueden ver más de nuestra galaxia en el cielo nocturno. Las probabilidades empeoran a medida que se avanza hacia el norte.

«Con solo una o dos por siglo, la posibilidad de una supernova en la Vía Láctea es pequeña, pero sería una tragedia perdérsela y este trabajo tiene por objeto mejorar las posibilidades de estar listo para el evento científico de toda una vida», concluye Beacon.

La Tierra vista desde Saturno


El Pais

La Tierra vista desde Saturno. / NASA/JPL-Caltech/Space Science Institute y NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Es apenas un puntito, tan pequeño que ha habido que añadirle una flecha. Pero es una de las imágenes más lejanas que se han tomado de la Tierra, a 1.440 millones de kilómetros. Bajo el impresionante ala del anillo de Saturno es difícil sentirse el centro del universo.

La Cassini-Huygens, que es la nave que ha tomado la imagen, despegó el 15 de octubre de 1997. Su objetivo era Saturno. Su lejanía impuso una trayectoria compleja que comenzó acercándola hasta Venus en dos ocasiones y luego a la Tierra para recibir su tercer empujón. Contando ya con suficiente energía, se encaminó hacia Júpiter y después el gran salto hasta Saturno. El 1 de julio de 2004 frenó y comenzó la exploración.

El 14 de enero de 2005 la sonda Huygens se separó de Cassini para posarse en la superficie de Titán, el principal satélite de Saturno. Quedó solo la Cassini. Esta, en 2005, se acercó a Júpiter.

El coste de diseñar, construir, lanzar y operar esta ambiciosa misión ha sido de 3.270 millones de dólares (2.327 millones de euros) (80% Estados Unidos, 15% ESA y 5% la Agencia Espacial Italiana, ASI) y este gasto se ha hecho a lo largo de 19 años, lo que da una media de unos 170 millones de dólares por año, por debajo del presupuesto anual de un equipo de fútbol puntero en Primera División

Titán, una luna de Saturno envuelta en hidrocarburos


El Pais

  • Un equipo científico desvela la presencia de compuestos orgánicos PAH en la alta atmósfera del mayor satélite del planeta de los anillos

Lagos de metano líquido en la superficie de Titán captados por la sonda ‘Cassini’ en órbita de Saturno. / NASA/JPL/USGS

Titán, el mayor satélite de Saturno, es el cuerpo celeste más lejano en el que se ha posado un artefacto enviado desde la Tierra. Se trata de una luna que merece especial interés por parte de los científicos dado que tiene una atmósfera compleja y lagos de hidrocarburos líquidos en su superficie, características que recuerdan a la Tierra primitiva. Ahora, los datos tomados allí por la sonda automática Cassini, en órbita del planeta de los anillos, ha permitido a un equipo científico desvelar el origen de la neblina que envuelve la superficie de Titán: procede del gas presente en las altas capas de su atmósfera, compuesto por hidrocarburos aromáticos policíclicos (PAH).

“Hace décadas se propuso que la capa de neblina de la baja atmósfera [de Titán] se generaba a partir de moléculas orgánicas complejas y, en 2007, se sugirió que estas moléculas podrían formarse en la atmósfera superior, varios cientos de kilómetros sobre su lugar de origen”, explica el investigador principal de la investigación que confirma ahora ambas hipótesis, Manuel López-Puertas, del Instituto de Astrofísica de Andalucía (IAA), del CSIC.

Sujeta a la sonda Cassini, de la NASA, viajó desde la Tierra el módulo Huygens, de la Agencia Europea del Espacio (ESA), que protagonizó, el 14 de enero de 2005, una de las grandes hazañas de la exploración espacial al descender con éxito hasta el suelo de Titán, tomando datos durante la caída y una vez en el suelo. Ninguna sonda artificial ha llegado a la superficie de un cuerpo tan lejano. En Titán, casi tan grande como Marte y con una temperatura en la superficie de 179 grados bajo cero, hay lagos de etano y metano que forman nubes y que, ocasionalmente provocan lluvias. “En muchos aspectos, es uno de los mundos más parecidos a la Tierra que se ha encontrado hasta ahora”, explica la NASA. “Con su densa atmósfera y su química orgánica, Titán parece una versión congelada de la Tierra hace unos miles de millones de años, antes de que los organismos vivos empezasen a bombear oxígeno a la atmósfera”.

Esa luna está envuelta por la neblina anaranjada que ha dificultado siempre la observación de su superficie. Pero el trabajo de observación de la misión Cassini-Huygens ha proporcionado una perspectiva nueva.

Los PAH de Titán están presentes entre, al menos, los 900 kilómetros y los 1.250 kilómetros sobre la superficie, explican ahora los investigadores. “Estos compuestos absorben los fotones ultravioleta del Sol, que son muy energéticos, rápidamente redistribuyen esta energía a nivel interno que finalmente vuelve a ser emitida en el infrarrojo cercano, lo que produce una fuerte emisión con una concentración de partículas relativamente baja”, explica López-Puerta. El gas se descubrió, precisamente, a través de su manifestación en infrarrojo, añaden los investigadores en un comunicado del CSIC.

Los resultados de la investigación, en la que participan científicos de España, Italia y Estados Unidos) se publican hoy en la revista The Astrophysical Journal.

El universo es 100 millones de años más viejo de lo que se creía


El Pais

  • El telescopio espacial europeo ‘Planck’ retrata en alta resolución la radiación emitida cuando habían transcurrido solo 380.000 años desde el Big Bang

Unos 380.000 años después de la gran explosión inicial, el universo se hizo transparente y la radiación emitida entonces se detecta hoy en el cielo a una temperatura ultrabaja. El telescopio espacial Planck la ha estado observando durante meses esa luz, la más antigua del cosmos, y ahora los científicos han presentado el mapa a altísima resolución de las pequeñas variaciones de temperatura de esa radiación, variaciones que serían como las semillas de las galaxias y cúmulos de galaxias. Los datos de este telescopio de la Agencia Europea del Espacio (ESA), presentados hoy en París, son mucho más precisos que los obtenidos con anteriores observatorios de este tipo y permiten ajustar mejor tanto la edad del universo como su composición. El cosmos tiene 13.810 millones de años, es decir, es unos 100 millones de años más viejo de lo estimado previamente, y está compuesto por materia corriente (4,9%), materia oscura (26%) y energía oscura (69,1%). Así que hay un poquito más de materia corriente de lo que se había establecido.

“La teoría cosmológica estándar se ajusta muy bien con los datos del Planck”, ha afirmado el científico británico George Efstathiou al presentar el nuevo mapa del cielo. Pero también ha destacado unas anomalías respecto a las predicciones de los modelos cosmológicos más extendidos, de nuestra comprensión actual del universo, “que podrían ser indicios de una nueva física”. Efstathiou ha anticipado que “Planck estimulará mucho el trabajo teórico”. Se trata de una zona ligerísimamente más fría que la media (se aprecian en azul en el cuadrante inferior derecha) que no encajaría muy bien en la distribución aleatoria predicha en los modelos.

Los datos presentados hoy responden a los primeros 15 meses de funcionamiento del Planck en el espacio y el artefacto sigue funcionando, así que cabe esperar más novedades dentro de unos meses, ha señalado Jean-Jacques Dordain, director general de la ESA.

Los primeros tiempos del cosmos fueron de altísima temperatura, una sopa densa de protones, electrones y fotones a unos 2.700 grados centígrados. Transcurridos unos 380.000 años se enfrió lo suficiente como para que los protones y electrones se unieran formando átomos, y los fotones (la luz) quedaron libres. En ese momento el universo se hizo transparente.

Cabe hacerse una lejana idea pensando en una piscina de agua hirviendo, que solo se hace transparente cuando ha bajado suficientemente la temperatura. Aquellos fotones permean todo el cosmos actual pero en forma de radiación muy fría, a 2,7 grados sobre el cero absoluto, y es lo que capta el Planck, como sus antecesores en el espacio COBE y WMAP, ambos de la NASA.

Esa radiación de fondo se descubrió en 1965 y fue una prueba de gran calado de la teoría del Big Bang, ya que era una de las predicciones de los físicos teóricos en ese modelo cosmológico. Pero el problema es que, entonces y durante décadas, la radiación era desesperantemente uniforme, de manera que resultaba imposible de cuadrar con la obvia no uniformidad del universo observable, es decir, las concentraciones de materia en las estrellas y galaxias. La solución la dio el COBE, cuando descubrió ligerísimas variaciones de temperatura en aquella radiación de fondo que ahora llega como microondas, tras haberse enfriado en el universo en expansión. Esas minúsculas variaciones de temperatura revelan las ondas disparadas por las fluctuaciones cuánticas en el universo inmediatamente tras nacer.

Los datos de Planck son mucho más precisos que los del COBE y el nuevo mapa muestra con alta resolución pequeñísimas variaciones de temperatura (azul más frio y rojo más caliente) que corresponderían a diferencias de densidad, como ligerísimos grumos de una salsa, que darían origen a las estructuras del universo actual.

“Con esa radiación fósil los cosmólogos hacen arqueología del universo”, ha comentado en París el director científico de la ESA, Álvaro Giménez. “El mapa más preciso es para los cosmólogos como una mina de oro de conocimiento del universo”, ha dicho Efstathiou.

En realidad el nuevo mapa es el resultado de limpiar a fondo el que fue presentado en 2010, ya que aquella primera cartografía de la radiación del universo primitivo incluida todavía toda la radiación de nuestra galaxia, que los científicos han ido restando hasta lograr el mapa definitivo de las fluctuaciones de la radiación de fondo de microondas.

Efstathiou ha recordado que la teoría más extendida sobre los primeros instantes del universo incluyen una fase de crecimiento exponencial, denominada de inflación. Ha presentado las simulaciones realizadas con ordenador del universo con fase de inflación cósmica y, al compararlo con el mapa real obtenido con el Planck, ha destacado la buena concordancia. “Los inflacionistas pueden estar contentos hoy”, ha dicho, aunque las anomalías detectadas darán trabajo a los científicos.

Un telescopio para observar el pasado

El Planck, un observatorio espacial de casi dos toneladas, está situado a un millón y medio de kilómetros de la Tierra, en un punto de equilibrio gravitatorio del sistema Sol-Tierra denominado Lagrange 2 (L2) y en dirección opuesta a la estrella. También están otros telescopios en órbita de L2, como el Herschel, un observatorio de infrarrojos igualmente también de la Agencia Europea del Espacio (ESA), que partió en el mismo cohete que el Planck, el 4 de mayo de 2009. La ESA aprovechó un único lanzamiento con un cohete Ariane 5, desde la base de Kourou, en la Guyana Francesa, para enviar los dos artefactos científicos y, tras el lanzamiento, se separaron y emprendieron viaje por separado a su destino de trabajo.

Con 4,2 metros de altura y un diámetro máximo de 4,2 metros, el Planck fue diseñado para hacer el mapa más preciso hasta ahora de las sutiles variaciones de temperatura de la radiación de fondo de microondas, una especie de eco remanente de los primeros tiempos del universo. El objetivo es profundizar en la senda iniciada en el espacio con el satélite de la NASA COBE, que, en los años noventa, descubrió esas sutiles variaciones de temperatura en la radiación de fondo de microondas que, hasta entonces, parecía ser uniforme en el cielo. A continuación llegó el WMAP, también de la NASA, que, además de trazar un mapa más preciso de la radiación de fondo, logró, por ejemplo, determinar la composición del cosmos.

Los objetivos de la misión europea no podían ser más ambiciosos al buscar respuestas a preguntas fundamentales: ¿Cómo empezó el universo? ¿Cómo ha evolucionado hasta ser como es hoy? ¿Cómo evolucionará en el futuro?

Dos naves espaciales gemelas se estrellarán en la Luna el próximo lunes


El Pais

  • Las GRAIL chocarán contra una montaña cerca del polo Norte, tras realizar el mapa del campo gravitatorio de mayor resolución de un cuerpo celeste
Trayectoria final de los robots gemelos de la misión Grail hasta chochar contra una montaña de la Luna. / NASA/JPL-Caltech/GSFC/ASU

Trayectoria final de los robots gemelos de la misión Grail hasta chochar contra una montaña de la Luna. / NASA/JPL-Caltech/GSFC/ASU

Ebb y Flow son las dos naves gemelas de la misión espacial GRAIL. Han estado dando vueltas a la Luna durante un año, en formación una tras otra, para hacer el mapa gravitatorio de ese cuerpo celeste, pero ya han terminado, y los especialistas de la NASA han planeado su destrucción controlada en el suelo lunar. Chocarán contra una montaña, cerca del polo Norte, el próximo lunes. Primero impactará Ebb, a las 21.28 (hora peninsular) y después Flow, 20 segundos más tarde. Cada uno de estos artefactos tiene el tamaño de una lavadora y 200 kilos de masa; se estrellarán a 1,7 kilómetros por segundo.

Las GRAIL han trabajado en órbita a una altura de 55 kilómetros sobre la superficie de la Luna durante la mayor parte de la misión, pero el 30 de agosto pasado descendieron hasta 23 kilómetros. Ahora, antes de su final destructivo, tienen que hacer un último experimento, esta vez de ingeniería. Recibirán la orden de mantener encendidos sus motores hasta que consuman todo el combustible, lo que permitirá a los expertos conocer con precisión cuánto queda en sus depósitos, un dato importante para calcular el consumo en futuras misiones y operarlas más eficazmente, explica la NASA.

Ebb y Flow llegaron a la Luna el pasado 1 de enero y, en su particular formación de trabajo una siguiendo a otra a una distancia de hasta 225 kilómetros, han estado midiendo con gran precisión las variaciones del campo gravitatorio lunar, lo que proporciona valiosa información a los investigadores para conocer lo que hay en el interior de ese cuerpo celeste. Conociendo su estructura interna se avanza en la comprensión de su formación y evolución. Los primeros resultados científicos se dieron a conocer a principios de este mes en la revista Science, destacando el hecho de la corteza de la Luna es más delgada de lo que se había estimado: tiene un grosor de entre 35 y 43 kilómetros y no 50 o 60. El mapa del campo gravitatorio realizado es el de más alta resolución que se ha hecho hasta ahora de un cuerpo celeste, según la NASA.

Mapa gravitatorio de la luna trazado por la misión Grail. / NASA/JPL-Caltech/MIT/GSFC

Mapa gravitatorio de la luna trazado por la misión Grail. / NASA/JPL-Caltech/MIT/GSFC

La técnica para medir las variaciones del campo gravitatorio se basa en el vuelo de los dos artefactos, uno tras otro y conectados por radioseñales. Unos equipos de altísima precisión que llevan a bordo permite medir la distancia que los separa en todo momento, de manera que cuando Ebb cae ligeramente, por ejemplo, porque sobrevuela una zona de rocas más densas –en el subsuelo o en la superficie- la distancia con Flow aumenta, aunque sea ligerísimamente.

En la última fase de la misión, las dos naves descenderán gradualmente durante varias horas y casi rozarán la superficie lunar hasta que se estrellen en el terreno elevado de la montaña elegida para el impacto. No habrá imágenes porque la zona estará en sombra en ese momento.

El planeta ‘vagabundo’


EL Mundo

Impresión artística del planeta errante. | ESO

Un mundo errante vaga por el espacio. El insólito objeto cósmico, detectado por el Observatorio Austral Europeo (ESO, por sus siglas en inglés), flota libremente por el Universo sin estrella anfitriona. Este cuerpo es el mejor candidato descubierto hasta ahora que podría clasificarse como planeta errante y el objeto de este tipo más cercano al Sistema Solar, ya que se encuentra a una distancia de unos 100 años luz.

Los planetas errantes son objetos de masa planetaria que vagabundean por el espacio sin estar atados a ninguna estrella. Ya se han encontrado antes posibles ejemplos de este tipo de objetos, pero, al no conocer sus edades, los astrónomos no podían saber si se trataba de planetas o de enanas marrones — estrellas ‘fallidas’ que perdieron la masa necesaria para desencadenar las reacciones que hacen brillar a las estrellas.

Pero ahora los astrónomos han descubierto un objeto, denominado CFBDSIR2149, que parece formar parte de un grupo cercano de estrellas jóvenes conocido como Asociación estelar de AB Doradus. Los investigadores encontraron el objeto en unas observaciones realizadas con el telescopio CFHT (Canada France Hawaii Telescope) y han aprovechado las capacidades del VLT (Very Large Telescope) de ESO para examinar en profundidad sus propiedades.

El lazo entre el nuevo objeto y la asociación estelar es la clave que permitirá a los astrónomos deducir la edad del nuevo objeto descubierto. Si el objeto está asociado a este grupo en movimiento -y por tanto es un objeto joven— es posible deducir aún más cosas sobre él, incluyendo su temperatura, su masa, y de qué está compuesta su atmósfera. Se trata del primer objeto de masa planetaria aislado identificado en una asociación estelar, y su relación con este grupo lo convierte en el candidato a planeta errante más interesante de los identificados hasta el momento.

“Buscar planetas alrededor de sus estrellas es similar a estudiar una mosca sentada a un centímetro de un distante y potente faro de coche“, afirma Philippe Delorme (Instituto de planetología y astrofísica de Grenoble), investigador principal del nuevo estudio. “Este objeto errante cercano nos da la oportunidad de estudiar la mosca con detalle sin la deslumbrante luz del faro estorbándonos”.

Se cree que objetos como este se pueden crear de dos modos, ambos intrigantes: como planetas normales que han sido expulsados del sistema que los albergaba, o bien como objetos solitarios como las estrellas más pequeñas o enanas marrones.

Este tipo de planetas pueden ser una ventana a multitud de conocimientos sobre el Universo. “Estos objetos son importantes, ya que pueden ayudarnos tanto a comprender más sobre cómo pueden eyectarse planetas de sistemas planetarios, como a entender cómo objetos muy ligeros pueden resultar del proceso de formación de una estrella”, afirma Philippe Delorme. “Si este pequeño objeto es un planeta que ha sido eyectado de su sistema original, saca de la nada la asombrosa imagen de mundos huérfanos, a la deriva en el vacío del espacio”.

Sin embargo, las investigaciones aún deben continuar para certificar si este objeto es definitivamente un planeta errante.