El ‘Hubble’ fotografía una supernova que sorprende por su brillo


El Pais

  • La explosión estelar fue descubierta por unos estudiantes el pasado enero

La supernova SN 2014J fotografiada por el telecopio ‘Hubble’ el pasado 31 de enero y ampliada sobre la imagen-mosaico de la galaxia M82 que captó el mismo observatorio espacial en 2006. / nasa/esa/a.goobar (stockholm university)

La explosión de una estrella que descubrieron, por pura casualidad, unos estudiantes británicos hace poco más de un mes se ha convertido en punto de interés de astrónomos en todo el mundo, que incluso han apuntado el telescopio espacial Hubble para verla. Es la supernova más brillante que se ha detectado desde hace 27 años y todavía es visible en el cielo con telescopios modestos de aficionado. Además, es de un tipo especial (Ia) que utilizan los cosmólogos para medir grandes distancias en el universo. Pero el cielo suele dar sorpresas a los científicos y, en este caso, no solo a los jóvenes de la Universidad de Londres que fueron los primeros en verla. Un grupo de especialistas de la Universidad de Berkeley (EE UU) está estudiando la supernova, que estalló el pasado 21 de enero y que se denomina oficialmente SN 2014J, y ha visto que es extraña porque incrementó su brillo más rápido de lo esperado. “Puede que nos esté enseñando algo de las supernovas de tipo Ia que los teóricos necesiten comprender; tal vez lo que pensábamos que era un comportamiento normal de una de estas supernovas sea lo anormal”, señala Alex Filippenko, líder del equipo.

Una enana blanca tiene tanta masa como el Sol y el tamaño de la Tierra

Una supernova es una colosal explosión que sufre una estrella cuando se desestabiliza. La descripción estándar de estos fenómenos habla de astros inmensos, mucho más masivos que el Sol, que, cuando las reacciones nucleares de su interior han consumido todo su hidrógeno y se han quedado sin combustible colapsan desencadenando todo el proceso de explosión en forma de supernova. Pero las de tipo Ia son distintas: son estrellas enanas blancas, viejas y muy densas, tanto que en ellas una masa como la del Sol está comprimida en un tamaño equivalente al de la Tierra; si roban materia a un astro compañero o si se fusionan dos de ellas, pueden superar un cierto umbral de masa a partir del cual dejan de ser estables y se desencadena la colosal explosión.

Es lo que vieron un puñado de alumnos de la Universidad de Londres en la noche del 21 de enero pasado, durante unas prácticas, en las imágenes que lograron captar de la galaxia M82, entre las nubes de aquella noche poco adecuada para la astronomía observacional. A Steve Fossey, el profesor, le sorprendió el punto brillante que aparecía en la galaxia bien conocida, hizo unas comprobaciones y resultó que se trataba de una supernova.

Una vez que se confirmó oficialmente, astrónomos de todo el mundo apuntaron sus telescopios hacia M82, situada a unos 11,5 millones de años luz de la Tierra. También revisaron sus archivos de los días precedentes, y resultó que la SN 2014J estaba en fotografías tomadas antes. En concreto, el telescopio automático Katzman, en el observatorio Lick (California), la había captado el 14 de enero, solo unas 37 horas después de que fuera visible desde la Tierra. Incluso un astrónomo aficionado japonés la habría captado unas horas antes. Unos días después, el 31 de enero la fotografió el Hubble, cuando estaba cerca de su máximo de brillo.

El equipo de Filippenko explica que la SN 2014J muestra el mismo brillo rápido que otra supernova, la SN 2013dy, que descubrió el telescopio Katzman el año pasado. “Dos de las tres supernovas de tipo Ia más recientes y mejor observadas son extrañas, lo que nos da nuevas pistas sobre cómo explotan las estrellas”, comenta el astrónomo de Berkeley, haciendo referencia a un tercer objeto de este tipo, la SN 2011fe, de hace tres años, y cuyo comportamiento se ajustó mejor a los modelos teóricos y a observaciones precedentes. Estos investigadores presentan sus conclusiones sobre la supernova del 21 de enero en The Astrophysical Journal Letters.

Los científicos usan los estallidos de tipo Ia para medir distancias en el cielo

El valor de las Ia como buen mojón de medida de distancias en el universo se debe a que estas supernovas generan el mismo brillo más o menos, lo que permite estimar la distancia a la que está la galaxia en la que se producen estas explosiones (igual que se puede calcular la distancia de una bombilla encendida si se conoce su potencia). Y fue precisamente con dos investigaciones independientes que utilizaron, en los años noventa, estas supernovas para medir distancias en el cosmos y la velocidad de recesión de las respectivas galaxias como se descubrió la inesperada aceleración de la expansión del universo. Los principales responsables de los dos equipos (Adam Riess, Brian Schmidt y Saul Perlmutter) recibieron el Premio Nobel de Física en 2011, con la aceleración (supuestamente debida al efecto de la denominada energía oscura) convertida ya en el tema más candente y misterioso de la cosmología actual.

El comportamiento anómalo de la última supernova “no contradice los resultados de la aceleración de la expansión”, dice Filippenko, “al refinar la comprensión de las explosiones de tipo Ia se pueden mejorar las medidas de distancias y hacer cálculos más precisos de la tasa de expansión, acotando mejor la naturaleza de la energía oscura”.

Otros científicos de Berkeley y de la Universidad Nacional Australiana han investigado el umbral de masa definido a partir del cual la estrella enana blanca explota en una supernova Ia, umbral por el que su brillo sería tan uniforme. Richard Scalzo y sus colegas afirman ahora que estas estrellas explotan a partir de un rango de masas un poco más amplio que ese umbral. Su investigación, que se publicará en la revista Monthly Notices of the Royal Society británica, ayudará a perfilar los modelos teóricos existentes sobre estas supernovas.

El hormigón romano era mejor que el actual (y menos contaminante)


El Confidencial

Los restos de un antiguo dique romano sumergido en el mar Mediterráneo, en la bahía de Pozzuoli, cerca de Nápoles, ha proporcionado al equipo científico de la Universidad de Berkeley liderado por el profesor Paulo Monteiro las muestras que han permitido a los investigadores analizar, por primera vez, la composición del hormigón que usaba la extinta civilización en sus construcciones, un material que han comparado con el actual para extraer conclusiones significativas.

La primera, que se trataba de una mezcla mucho más resistente, con altas condiciones para durar en el tiempo. Además, la forma en que los romanos fabricaban su hormigón es mucho más ecológica que los procesos mediante los cuales se fabrica en la actualidad el material, cuya base principal es el cemento Portland.

Más allá de la curiosidad histórica del hallazgo, la investigación supone un avance notable. La aplicación real del estudio podría mejorar de forma significativa la calidad de uno de los materiales de construcción por excelencia en la actualidad, y no sólo en términos de su composición sino también en el ámbito ecológico. Según los datos ofrecidos por los científicos en el comunicado mediante la que han difundido su investigación, el 7% de las emisiones de dióxido de carbono a la atmósfera provienen de la fabricación de este tipo de cemento.

Una composición perfecta

El problema del cemento Portland, según los investigadores, es que en su proceso de fabricación se libera una gran cantidad de dióxido de carbono al calentarse, a más de 1.400 grados centígrados -a través de la quema de combustibles fósiles en la mayoría de los casos, aunque las organizaciones ecologistas tratan de evitarlo- uno de los principales componentes químicos de la mezcla, el carbonato de calcio. Sin ir más lejos, el jueves se llevó a cabo una manifestación en sede del Parlamento navarro contra la incineración en la planta de Cementos Portland en la localidad de Olazti.
Las principales diferencias del hormigón romano, en cuanto se refiere al proceso de combustión, es que su mezcla incluye una cantidad menor de cal y requiere una menor cantidad de combustible, además a una temperatura también inferior, rondando los 900 grados centígrados.
En lo referente a la mezcla, su ingrediente estrella -no secreto-, que ya se utiliza hoy en día, aunque hasta ahora no se había podido conocer su comportamiento a largo plazo, como en las estructuras romanas, son las rocas y cenizas volcánicas, cuyos resultados en las obras de ingeniería en contacto con el agua marina han sorprendido a los investigadores. De hecho, ésa es la parte más relevante de su estudio: la reacción química del hormigón romano en contacto con el mar crea una estructura de enlaces de una gran resistencia.
En ese sentido, los científicos han destacado que las construcciones modernas basadas en hormigón comienzan a dar señales de desgaste a partir de los 50 años, y que están concebidas para durar alrededor de un siglo y medio, un periodo que resulta ridículo en comparación con algunas obras de ingeniería levantadas durante el Imperio Romano, que han resistido miles de años de agresiones químicas, en entornos “tan agresivos como los marinos”, ha explicado la profesora Marie Jackson, parte integrante de la investigación.

Puzolana, el sustituto del cemento Portland

Históricamente, se considera a Marcus Vitruvius Pollio, autor del tratado sobre arquitectura De architectura libri decem, como el padre del hormigón sobre el que se construyó el Imperio Romano. Las obras de ingeniería civil de la civilización que dominó Occidente han trascendido la historia, convirtiéndose en ejemplo de admiración para las generaciones posteriores. El hormigón también forma parte de esa leyenda dorada. “Se trata de uno de los materiales de construcción más duraderos, y no nació por accidente. El transporte era básico para la estabilidad política, económica y militar para el Imperio Romano, por lo que la construcción de puertos duraderos era fundamental”, añade la profesora Jackson.

En las recetas del propio Vitruvius, y también de Plinio el Viejo, para fabricar el mejor hormigón, existen referencias a las cenizas volcánicas abundantes en la región del golfo de Nápoles, cerca de la localidad de Pozzuoli. El hecho de que no se trata de un componente misterioso lo demuestra que se está utilizando en algunas mezclas actuales, en sustitución parcial del cemento Portland.
El problema es que las cenizas volcánicas no abundan en el planeta, por lo que la vía romana no sería efectiva, simplemente por la escasez de la materia prima, para sustituir la exigente, en términos cuantitativos producción actual de cemento Portland. No obstante, los científicos han comprobado que el  mineral de nombre puzolana, en este caso muy abundante en el mundo, posee propiedades similares a las cenizas volcánicas. Según las estimaciones de los investigadores, su utilización en los procesos de fabricación del hormigón podría cubrir el 40% de la demanda de cemento Portland en el mundo. No es casualidad que la principal fuente de financiación de esta investigación proceda de Arabia Saudita, donde existen grandes excedente de puzolana.