Nueva misión de la NASA estudiará la luna de Júpiter que podría albergar vida


web

  • La agencia estadounidense ya eligió los nueve instrumentos que irán a bordo de la nave, que analizará la superficie de la luna Europa durante un periodo de tres años

nov_2754

WASHINGTON.- La NASA anunció hoy el inicio oficial del trabajo de su nueva misión, que viajará hasta Júpiter para estudiar una de sus lunas, Europa, el principal cuerpo del Sistema Solar que podría albergar vida, dadas sus condiciones ambientales.

La misión -que aún no tiene nombre- ya seleccionó los nueve instrumentos que irán a bordo de la nave y que buscarán obtener más información sobre la superficie de Europa y sus características.

Datos obtenidos por otra sonda de la agencia (Galileo) indican que bajo la cubierta de hielo encontrada en su superficie habría un océano que podría tener dos veces la cantidad de agua que se encuentra en la Tierra. La tésis es que con agua salada, un fondo marino rocoso y la energía y química del mar, Europa sería la mejor opción para encontrar vida fuera de la Tierra en el Sistema Solar.

La nueva misión consistiría en una sonda que funciona a través de energía solar y que realizaría 45 vuelos cercanos a Europa durante un periodo de tres años, con alturas que irían desde los 25 a los 2.700 kilómetros.

El año pasado la NASA hizo un llamado a universidades y centros de estudio para que presentaran ideas para el instrumental que irá a bordo. Llegaron 33 propuestas y se eligieron nueve, que incluyen magnetómetros para estudiar el grosor del hielo de Europa y la salinidad de su océano y una cámara que mapeará y captará imágenes de la superficie de la luna.

Por ahora no hay una fecha definida para el lanzamiento de la sonda.

Final ‘suicida’ de una nave espacial en Mercurio


El Mundo

 Detalle de la zona en la que impactará la sonda 'Messenger' NASA

Detalle de la zona en la que impactará la sonda ‘Messenger’ NASA

Una nave espacial se ha estrellado contra la superficie de Mercurio. No se trata de un accidente, sino de una maniobra perfectamente planeada con la que la sonda Messenger pone fin a sus cuatro años de misión en el planeta más cercano al Sol. Allí encontró un mundo que los científicos de la NASA han definido como «fascinante».

Según ha precisado la agencia espacial de EEUU, el impacto se ha producid a las 21.26 de este jueves (hora peninsular española).

La superficie de Mercurio ha sido modelada por la actividad volcánica. Entre otros descubrimientos, la nave ha confirmado que tiene agua helada en cráteres cerca de sus polos: «Lo más probable es que ese agua almacenada ahora en depósitos de hielo que están permanentemente a la sombra llegó al planeta más interno del Sistema Solar a través de los impactos de cometas y asteroides», explicó hace unos días en rueda de prensa Sean Solomon, investigador principal de la misión y director del Observatorio de la Tierra Lamont-Dohertym en la Universidad de Columbia.

Los análisis químicos mostraron, asimismo, una superficie pobre en hierro y rica en elementos volátiles como el azufre y el sodio. «A pesar de que Mercurio es uno de los planetas vecinos de la Tierra, sorprendentemente se sabía poco de él antes de mandar esta nave», recordó Solomon.

En el momento de su suicidio, la nave viajaba a una velocidad de 3,91 kilómetros por segundo. Según ha calculado Jim Raines, investigador de la Universidad de Michigan, durante el impacto, la nave, de unos 513 kilogramos, ha liberado tanta energía como la que hubiera causado una tonelada de explosivo TNT. Se calcula que el cráter que ha dejado en Mercurio mide 16 metros de diámetro.

La nave Messenger, que despegó el 3 de agosto de 2004 desde Cabo Cañaveral (Florida), tardó casi siete años en llegar a Mercurio, en cuya órbita entró el 18 de marzo de 2011. Durante su viaje por el Sistema Solar, recorrió un total de 7.900 millones de kilómetros.

El plan inicial era que la sonda trabajara durante un año orbitando el planeta para recabar datos que permitieran a los científicos intentar responder a varias cuestiones que consideraban críticas. Sin embargo, debido al buen estado que presentaban sus instrumentos una vez transcurrido ese periodo y aprovechando que todavía le quedaba combustible, la NASA decidió prorrogar su misión durante otros tres años para poder investigar nuevos interrogantes que iban surgiendo a raíz de los datos que proporcionaba.

La ruta a Mercurio

Messenger no fue la primera nave en visitar Mercurio, un planeta con un diámetro de casi 5.000 kilómetros (frente a los 13.000 km aproximadamente que tiene la Tierra). Mariner 1 sobrevoló este planeta del Sistema Solar tres veces entre 1974 y 1975, proporcionando los primeros datos in situ para conocer este mundo, del que sólo pudo inspeccionar la mitad de su superficie.

En Messenger, su sucesora, los ingenieros introdujeron las mejoras tecnológicas desarrolladas durante tres décadas. Componentes miniaturizados y nuevos materiales más ligeros y resistentes que han protegido sus delicados instrumentos en una de las zonas más inhóspitas del Sistema Solar debido a su cercanía con el astro rey. La nave trabaja en un entorno en el que las temperaturas oscilan entre los 300ºC y los 20º C.

Asimismo, otro de los puntos fuertes de la misión ha sido lograr diseñar una trayectoria que permitiera a una nave de esas características llegar a Mercurio. Cuando despegó, el combustible que llevaba a bordo representaba casi el 55% de su peso. Fabricar una nave espacial que fuera lo suficientemente ligera como para poder llevar a bordo esa cantidad de combustible y ejecutar esa trayectoria supuso un gran reto.

La NASA considera que la misión ha sido un éxito desde el punto de vista científico y tecnológico, y da por bien empleados los 446 millones de dólares que ha costado y que comprenden tanto el desarrollo de la nave y de sus instrumentos, como las operaciones y el análisis de los datos. «Lo único que lamentamos es que no tengamos suficiente combustible para operar otros diez años», declaraba Andy Calloway, el jefe de operaciones de la Messenger, durante el décimo aniversario del inicio del viaje de esta sonda.

«Por supuesto, cuanto más sabemos, más preguntas nuevas surgen», apunta Sean Solomon, que considera que «hay muchas razones para que volvamos a Mercurio con nuevas misiones».

Las lecciones de esta misión

Olga Prieto, geóloga planetaria del Centro de Astrobiología (CAB/CSIC-INTA), destaca los logros en ingeniería y navegación que ha realizado esta misión, «ya que acercarse a la órbita de Mercurio es complicado por su cercanía al Sol». El estudio de este planeta, añade a través de un correo electrónico, es necesario para entender la formación y evolución del Sistema Solar.

Desde el punto de vista científico, «una de las lecciones que nos ha enseñado esta misión es el riesgo que se corre siempre de simplificar cuando carecemos de suficientes datos. Messenger ha desvelado matices de las características físicas, químicas y geológicas de Mercurio que no esperábamos, entre los que destacan principalmente la presencia de hielo de agua en los cráteres de los polos o la alta concentración de volátiles que posee (K, S, Na, Cl)», explica.

Pese a que Messenger ya ha dejado de operar, la científica española recuerda que quedan «un montón de datos para analizar y reconfigurar la idea que teníamos de este planeta». Por otro lado, en 2017 será lanzada la misión europea Bepi-Colombo, que podrá investigar el impacto de la Messenger sobre Mercurio. «El cráter generado abre una ventana (como una cata) para mirar al subsuelo del planeta, donde los materiales están más frescos, menos afectados por la exposición al exterior».

Pese al valor científico de esta maniobra, Prieto recuerda que los impactos de sondas sobre planetas «es un asunto controvertido en la comunidad planetaria por la contaminación que conlleva. En el caso de Mercurio, se tienen menos prejuicios porque es un planeta catalogado como de bajo interés astrobiológico. Las normas internacionales de protección planetaria se oponen frontalmente a este tipo de maniobras en cuerpos planetarios con mayor interés astrobiológico como Marte, Europa o Encélado».

Twitter: @teresaguerrerof

Hallan en la Tierra meteoritos procedentes… de la Tierra primitiva


ABC.es

  • Las rocas habrían salido despedidas cuando un cuerpo planetario impactó contra nuestro planeta hace 4.000 millones de años
Archivo ABC | La formación de la Luna, después del impacto de la Tierra con un cuerpo planetario

Archivo ABC | La formación de la Luna, después del impacto de la Tierra con un cuerpo planetario

Sabemos que la Luna se formó hace más de 4.000 millones de años tras el impacto contra la Tierra de un cuerpo planetario del tamaño de Marte. El colosal encontronazo debió, por fuerza, lanzar al espacio miles de escombros de todos los tamaños. Muchos de esos fragmentos de roca formaron la Luna, pero un buen número de ellos debería estar aún por los alrededores y, lo que es más, algunos podrían incluso haber regresado a nuestro planeta, en forma de meteoritos, tras millones de años de vagabundeo espacial.

Ahora, y bajo la dirección del astrónomo Bill Bottke, un grupo internacional de investigadores del Instituto Virtual de Investigación y Exploración del Sistema Solar (SSERVI), de la NASA, ha conseguido encontrar, en una serie de meteoritos rocosos caídos a la Tierra un registro del gigantesco impacto que formó la Luna. Su trabajo está a punto de publicarse en Science.

El mayor impacto conocido en el Sistema Solar interior fue, sin duda, el que dio origen a la Luna. Pero el momento exacto de esa colisión sigue sin conocerse con exactitud, y las edades de las rocas lunares más antiguas traidas a la Tierra por los astronautas de las misiones Apolo sigue siendo una cuestión sujeta a debate.

Pero las simulaciones numéricas del gigantesco impacto realizadas por Bottke indican que el evento no solo creó un disco de escombros alrededor de la Tierra (a partir del que se formó la Luna), sino que eyectó también enormes cantidades de material mucho más lejos y completamente fuera del incipiente sistema Tierra-Luna. Sin embargo, el destino de todo ese material, en el que se incluye un buen porcentaje de masa de la Tierra primitiva, no ha podido ser examinado de cerca hasta ahora.

Lo que parece seguro es que un buen número de esos fragmentos impactaron a su vez contra cuerpos del cinturón de asteroides, entre las órbitas de Marte y Júpiter, y que dejaron en ellos numerosas pruebas de lo sucedido. Otras colisiones más recientes de esos mismos asteroides volvieron a liberar esos restos de Tierra primigenia y algunos de ellos, para suerte de los investigadores, han regresado a nuestro planeta y pueden ser usados para calcular, por fin, la edad de la Luna.

Las simulaciones informáticas y las comparaciones con el número y tamaño de los fragmentos que se producen cuando los asteroides chocan entre sí indican que, tras el gran impacto del protoplaneta contra la Tierra, salieron despedidos al espacio numerosos fragmentos de varios kilómetros de diámetro. Muchos de esos fragmentos pudieron llegar hasta el cinturón de asteroides, y además a velocidades muy superiores de las que tienen normalmente los miembros de ese anillo rocoso cuando chocan unos contra otros. Esos impactos habrían calentado la superficie de los asteroides alcanzados hasta el punto de dejar en ellos huellas permanentes de la colisión. Huellas que guardan información precisa sobre el momento y la magnitud del bombardeo.

Según los análisis de los investigadores, la Luna se formó hace 4.470 millones de años, una edad que coincide con la de los más antiguos materiales de formación del Sistema Solar analizados hasta ahora por los científicos. Pero de las «firmas» de este impacto se pueden extraer también valiosos datos sobre las últimas etapas de la formación de planetas en nuestro Sistema Solar.

Por ejemplo, el equipo dirigido por Bottke está estudiando cómo ajustar el número de asteroides que podría haber aún en el Sistema Solar interior tras la formación de Mercurio, Venus, la Tierra y Marte. Y esas «firmas» podrían ayudar también a deducir la historia de impactos de cuerpos muy antiguos, como Vesta, uno de los mayores cuerpos del cinturón de asteroides, objetivo de la sonda Dawn y lugar de procedencia de muchos meteoritos caidos en la Tierra.

Incluso es posible que pequeños restos del impactador que formó la Luna pudieran encontrarse aún dentro de los meteoritos que muestran signos del rápido calentamiento que provocó impacto gigante. Lo cual permitiría a los científicos explorar por primera vez la naturaleza primordial y aún desconocida de nuestro planeta natal.

La Tierra chocó con un planeta gemelo para crear la Luna


El Pais

  • Un estudio concluye que es “bastante probable” que hubiese un descomunal choque entre planetas muy similares
Reconstrucción del choque entre la Tierra y otro planeta con una composición muy similar / HAGAI PERETS

Reconstrucción del choque entre la Tierra y otro planeta con una composición muy similar / HAGAI PERETS

Sistema Solar, hace unos 4.500 millones de años. Los gigantes gaseosos Saturno y Júpiter ya se han formado. Mientras, en la región más cercana al Sol, orbitan más de 80 planetas rocosos como la Tierra. En realidad son embriones de planetas que chocan violentamente entre sí, se funden y forman cuerpos cada vez más grandes. Este descomunal tiovivo seguirá en marcha unos 200 millones de años. Para entonces, el enjambre de rocas se habrá agrupado en cuatro planetas. No hay manera de saber si este relato es cierto, aunque es muy probable que Marte, la Tierra, Venus y Mercurio se formasen así. Ahora, una de las simulaciones más precisas que se han hecho de aquel proceso intenta esclarecer un enigma que lleva vigente décadas, si no siglos: ¿cómo se formó la Luna?

La teoría del gran impacto dice que nuestro planeta chocó con otro del tamaño de Marte, conocido como Theia. Fue un cataclismo tan violento que nuestro planeta desapareció durante unas horas. Una pequeña parte salió despedida y se mezcló con los restos de Theia, convertidos en roca fundida tras el golpe. El resultado fue la Luna.

Es un resultado apasionante que resuelve 30 años de dudas

El gran problema para aceptar esta teoría es que, según las estimaciones más recientes, menos de un 1% de las colisiones eran entre planetas iguales. Actualmente los planetas del Sistema Solar tienen composiciones muy diferentes unos de otros, con lo que Theia también debió haber formado una Luna muy diferente de la que conocemos. Sin embargo, las rocas lunares traídas por las misiones Apolo a finales de los años sesenta demostraron que los yermos de la Luna y el manto terrestre son casi indiferenciables en su composición. El origen de la Luna se convirtió, más que nunca, en un enorme quebradero de cabeza.

El nuevo trabajo, publicado en Nature, muestra ahora que los choques entre gemelos eran mucho más comunes de lo que se pensaba. “Hemos usado simulaciones de alta resolución para comprobar si la composición de cada planeta y el último cuerpo con el que impactaron eran tan diferentes como la gente pensaba de antemano y lo que hemos averiguado es que sucede justo lo contrario”, explica Alessandra Mastrobuono, astrofísica del Instituto de Tecnología de Israel y coautora del estudio. “Es un resultado apasionante que potencialmente resuelve 30 años de dudas sobre la teoría del gran impacto”, añade.

Su equipo ha simulado 40 veces la formación de los planetas interiores del Sistema Solar, cada vez manejando las trayectorias de unos 80 embriones planetarios y entre 1.000 y 2.000 fragmentos más pequeños que chocan y chocan durante millones de años. La complejidad de cálculo es tal que cada simulación lleva de dos a cuatro meses y ha requerido el uso de un superordenador, explica la astrofísica. Los resultados del análisis afirman que entre el 20% y el 40% de los cuerpos que chocaron contra la Tierra eran prácticamente iguales químicamente. En otras palabras, “es bastante probable” que la Tierra chocase con un planeta gemelo y que eso explique el origen de la Luna, dice Mastrobuono.

Robin Canup, astrofísica de EE UU, aporta una opinión independiente sobre el trabajo. Estos resultados dan “un apoyo renovado” a la teoría del gran impacto, explicando las similitudes entre la Luna y la Tierra, dice la experta del Instituto de Investigación del Suroeste (EE UU). Pero los datos no bastan para cerrar el caso. Aún hay cosas que no encajan, por ejemplo, las diferencias en la composición de ciertos elementos como el oxígeno o el tungsteno. Precisamente otros dos estudios publicados este miércoles en Naturese centran en ese segundo elemento, cuya composición es ligeramente diferente entre la Tierra y la Luna. En una nota de prensa, uno de los equipos responsables del trabajo señala que estos datos son compatibles con un gran impacto, pero descartan la posibilidad de que Theia y la Tierra tuvieran la misma composición. Mastrobuono y Canup mantienen que sí son compatibles, aunque, advierte esta última, serán necesarios nuevos cálculos probabilísticos para demostrarlo.


La Luna del otro Darwin

El debate científico sobre los orígenes de la Luna pueden remontarse hasta 1898, cuando George, el hijo astrónomo de Charles Darwin, propuso que la Tierra joven escupió parte de su masa por fuerzas centrífugas, una hipótesis que, con variaciones, sigue siendo la otra gran hipótesis en liza, segúnJosé Luis Ortiz, físico del Instituto de Astrofísica de Andalucía. Ortiz resalta la importancia de este nuevo estudio para intentar encajar las piezas que faltan, pero advierte de que “se trata solo de una hipótesis basada en modelos numéricos”. El físico apoya la otra hipótesis en contienda, que fue la Tierra la que perdió parte de su masa para formar la Luna pues le parece la explicación más plausible para el extremo parecido entre uno y otro cuerpo. Además “se han publicado estudios recientemente que la apoyan”, dice.

Miles de millones de planetas en zona habitable, solo en nuestra galaxia


ABC.es

  • Nuevos cálculos implican la existencia potencial de mucha agua y, lo más importante, de mucha vida
gliese-exoplaneta--644x362

Archivo Investigadores han calculado cuál es la probabilidad de que las estrellas de nuestra galaxia tengan planetas

 Hasta ahora, los astrónomos han descubierto ya miles de exoplanetas en nuestra galaxia, la Vía Láctea. Mundos lejanos que giran alrededor de otras estrellas y muchos de los cuales, además, forman parte de sistemas planetarios que recuerdan a nuestro Sistema Solar. La sonda Kepler, especialmente diseñada para esta búsqueda, es el instrumento que más planetas extrasolares ha descubierto hasta ahora. Y ha sido precisamente utilizando sus datos como un grupo de investigadores de la Universidad Nacional de Australia y el Instituto Niels Bohr, en Copenhague, ha calculado cuál es la probabilidad de que las estrellas de nuestra galaxia tengan planetas en la zona habitable, esto es, a la distancia precisa de ellas para permitir que exista agua líquida en sus superficies.

Los resultados han sido sorprendentes. De hecho, los cálculos muestran que miles de millones de estrellas de nuestra galaxia pueden tener entre uno y tres planetas en sus zonas habitables, lo que implica la existencia potencial de mucha agua y, lo más importante, de mucha vida. El esperanzador estudio se publica hoy en Monthly Notices of the Royal Astronomical Society.

Gracias a los instrumentos del Kepler los astrónomos han descubierto ya cerca de mil planetas alrededor de estrellas de nuestra galaxia y trabajan ahora para confirmar otros tres mil potenciales. Muchas estrellas cuentan con sistemas que contienen entre dos y seis planetas, aunque podría ser que hubiera más fuera del alcance de los instrumentos de la sonda Kepler, que está mejor equipada para buscar mundos grandes y que estén relativamente cerca de sus soles.

Pero los mundos que orbitan muy cerca de sus estrellas suelen ser demasiado calientes para la vida. Por eso, los investigadores han tratado de averiguar si también podría haber mundos algo más lejos de esos soles, en sus zonas habitables, donde el agua y la vida son teóricamente posibles. Para conseguirlo, los autores del estudio han llevado a cabo una serie de cálculos basados en una nueva versión de un método que tiene ya 250 años de antigüedad y que se conoce como la Ley de Titus-Bode.

Una ley planetaria

Formulada alrededor del año 1770, esta ley permitió calcular la posición exacta de Urano mucho antes de que fuera descubierto. La Ley de Titus-Bode afirma que existe una relación entre los periodos orbitales de los distintos planetas de nuestro sistema solar. Así, la relación entre el periodo orbital del primer y segundo planeta es la misma que existe entre el segundo y el tercero, que entre el tercero y el cuarto y así sucesivamente. Por eso, si sabemos cuánto tardan algunos de los planetas en completar una órbita alrededor de su estrella, es posible calcular cuánto tardarían otros planetas que aún no conocemos en hacer lo mismo, lo que nos permitiría calcular su posición.

“Decidimos usar este método para calcular las posiciones potenciales de planetas en 151 sistemas en los que Kepler ya había encontrado entre tres y seis mundos -explica Steffen Kjaer Jacobsen, del Instituto Niels Bohr-. En 124 de los sistemas planetarios, la Ley de Titus-Bode logró fijar la posición de los planetas. Usando el mismo método, intentamos predecir dónde podría haber más planetas algo más externos en esos sistemas solares. Pero sólo hicimos los cálculos para planetas cuya existencia pudiera después ser confirmada con los instrumentos del propio Kepler”.

En 27 de los 151 sistemas planetarios analizados, los planetas observados no se ajustaban, a primera vista, a la Ley de Titus-Bode. Por lo que los investigadores intentaron encajar los planetas en el “patrón” en el que los planetas deberían ubicarse. Luego añadieron los planetas aparentemente “perdidos” entre los que ya eran conocidos y añadieron, por último, un planeta adicional en cada sistema, más allá del mundo más lejano conocido. De este modo, lograron predecir un total de 228 planetas en los 151 sistemas planetarios.

“Hicimos entonces una lista prioritaria con 77 planetas de 40 sistemas planetarios -explica Jacobsen-. Los que tenían más posibilidades de ser vistos por Kepler. Y animamos a otros investigadores a buscar esos mundos. Si los encuentran, sería un indicativo de que el método se sostiene”.

Los planetas más cercanos a sus estrellas están demasiado calientes como para tener agua y vida. Y los más alejados tampoco sirven por todo lo contrario: son demasiado fríos. Pero entre estos extremos está la zona habitable, donde el agua y la vida son teóricamente posibles. Por supuesto, la zona habitable varía de estrella a estrella, y depende de lo grande y brillante que ésta sea.

Por eso, los investigadores calcularon el posible número de planetas en las zonas habitables basándose en esos mundos “extra”, que habían añadido a los 151 sistemas planetarios estudiados siguiendo la Ley de Titus-Bode. Y el resultado fue de entre uno y tres planetas en la zona habitable para cada uno de los sistemas.

Sólidos y con agua líquida

Más allá de los 151 sistemas planetarios analizados, los científicos se fijaron también en otros 31 sistemas en los que ya se ha descubierto algún planeta en las zonas habitables o en los que bastaba con añadir un solo mundo extra para llevar a cabo los cálculos.

“En estos 31 sistemas planetarios -asegura Jacobsen- nuestros cálculos mostraron que tienen una media de dos mundos dentro de la zona habitable. Según las estadísticas y las indicaciones que tenemos, un buen porcentaje de esos planetas serían sólidos, con agua líquida y con posibilidades de albergar vida”.

Si extrapolamos estos resultados al resto de nuestra galaxia, significaría que sólo aquí, en la Vía Láctea, podría haber miles de millones de estrellas con planetas en la zona privilegiada para la vida. Jacobsen asegura que lo que pretende ahora es animar a otros investigadores para que rebusquen en los datos de Kepler y comprueben si los planetas predichos por él y su equipo existen realmente y se encuentran en las posiciones calculadas.

Ganímedes, la mayor luna de Júpiter, alberga más agua líquida que la Tierra


El Mundo

  • Ganímedes, la mayor luna de Júpiter, alberga más agua líquida que la Tierra
  • El telescopio espacial ‘Hubble’ detecta la presencia de un gran océano subterráneo bajo la corteza de la mayor luna del Sistema Solar
  • El hallazgo se hizo de forma indirecta, observando la actividad de sus auroras y a través de ellas, de su campo magnético
14261759834443

Recreación artística de la luna Ganímedes, con las auroras detectadas, orbitando Júpiter, al fondo.NASA

Ganímedes es la mayor luna de Júpiter y también del Sistema Solar. Y según sugieren las observaciones realizadas con el telescopio espacial Hubble, alberga un gran océano subterráneo que contiene más agua líquida que la que hay en la Tierra. La conclusión fue presentada ayer durante una rueda de prensa de la NASA en la que participaron los principales científicos que han llevado a cabo esta investigación, publicada en Journal of Geophysical Research: Space Physics.

Según sus cálculos, esta gran masa de agua salada tendría unos 100 kilómetros de profundidad (aproximadamente diez veces más que los océanos más profundos de la Tierra) y se encontraría bajo una corteza de 150 kilómetros de espesor, compuesta en su mayor parte por hielo.

Descubierta por Galileo en el año 1610, la luna gigante Ganímedes tiene un tamaño comparable al planeta Mercurio y cuenta con un campo magnético propio (es el único satélite del Sistema Solar que lo tiene) y una frágil atmósfera, muy distinta a la de la Tierra, en la cual el telescopio Hubble ya había encontrado indicios de oxígeno.

Basándose en los modelos teóricos que usan para sus investigaciones, desde los años 70 del siglo pasado los científicos ya pensaban que este satélite podía tener un gran océano. La misión de la NASA Galileo midió en el año 2002 su campo magnético, reforzando con sus resultados esas sospechas. Ahora, han encontrado una nueva prueba.

El telescopio Hubble fue utilizado para observar en Ganímedes las auroras, un fenómeno vinculado al campo magnético del satélite. Debido a que los telescopios no pueden ver lo que hay en el interior de los planetas, los satélites o cualquier objeto celeste, rastrear el campo magnético a través de las auroras les permite de forma indirecta averiguar lo que hay dentro. Además de tener un campo magnético propio, al orbitar muy cerca de Júpiter, Ganímedes también se ve influida por el campo magnético de ese planeta gigante.

Los científicos observaron el comportamiento de las dos auroras para determinar que debajo de la corteza de Ganímedes hay una gran masa de agua salada que influye en su campo magnético. «Siempre le di vueltas a la idea de cómo podíamos usar un telescopio de manera distinta. ¿Es posible emplearlo para mirar lo que hay en el interior de un cuerpo planetario? Entonces pensé en las auroras, porque están controladas por el campo magnético. Si observas una aurora de la forma adecuada, puedes obtener información sobre el campo magnético. Y si sabes cómo es el campo magnético, obtienes información sobre el interior de esa luna», explicó durante la rueda de prensa telefónica Joachim Saur, investigador de la Universidad de Colonia (Alemania) y autor principal de este trabajo.

«Los nuevos datos encajan muy bien con lo que se sabía. Se trata de un resultado importante porque afianza la idea de que ese océano de agua líquida existe, pues contamos con evidencias indirectas», señala a EL MUNDO Olga Prieto, geóloga planetaria del Centro de Astrobiología (CAB-CSIC-INTA).

Prieto es una de las investigadoras que ha planificado la ambiciosa misión JUICE (Jupiter Icy moons Explorer) que la Agencia Espacial Europea (ESA) tiene previsto lanzar al sistema de Júpiter en el año 2022, adonde llegaría en 2030.

Uno de los principales objetivos de esta sonda será precisamente estudiar Ganímedes e indagar sobre la presencia de este gran océano de agua líquida. Io, Europa y Calisto son otros de los satélites que hacen que el estudio del sistema de Júpiter tenga gran interés.

«Este descubrimiento supone un hito y pone de manifiesto lo que el Hubble puede conseguir», afirmó John Grunsfeld, uno de los responsables del departamento científico de la NASA, que el próximo 24 abril celebrará un cuarto de siglo de observaciones y descubrimientos de su telescopio espacial, que también es operado por la ESA. En su opinión, «un océano profundo bajo la corteza helada de la luna Ganímedes abre la fascinante posibilidad de que haya vida más allá de la Tierra».

Twitter: @teresaguerrerof


 

TRES REQUISITOS PARA QUE PUEDA HABER VIDA

Detectar la presencia de agua líquida como la que parece haber en Ganímedes, el mayor satélite de Júpiter, afirma la NASA, «es crucial» en la búsqueda de mundos habitables y de la presencia de vida como la conocemos en nuestro planeta. No obstante, matiza Olga Prieto, investigadora del Centro de Astrobiología, «haber detectado agua líquida implica simplemente que se da uno de los requisitos para poder decir que el ambiente es habitable, pero no nos dice nada sobre la existencia de vida como la que conocemos en la Tierra. Una cosa es la habitabilidad y otra la existencia de vida», señala. Tres son los requisitos que los científicos dedicados a la astrobiología consideran necesarios para determinar que un ambiente es habitable, como recuerda Prieto.«El primero es que haya agua líquida. El segundo, que haya energía para poder mantener el metabolismo de los organismos que pudieran vivir en ese ambiente. En la Tierra, por ejemplo, sabemos que hay organismos que usan la luz solar y otros que utilizan energía química. Por último, debe haber elementos químicos esenciales para la vida, como el carbono, el nitrógeno, el oxígeno, el hidrógeno, el fósforo y el azufre», resume la investigadora en conversación telefónica. Lo que parece evidente es que en la superficie de este mundo helado, argumenta Prieto, no es posible que exista vida como la que se da en la Tierra: «La temperatura en la superficie de este satélite es de unos -173ºC, así que no puede haber agua líquida. Y si hay hielo, no hay vida. Pero en el interior de Ganímedes hay decenas de kilómetros de agua líquida. Es sorprendente la cantidad de agua que puede tener un satélite de hielo», añade la científica española. Por otro lado, la sonda ‘Cassini’ de la ESA ha detectado esta semana diminutos granos de roca en Encélado, una de las lunas heladas de Saturno, que sugieren que se dan procesos hidrotermales en su lecho marino.

La nave ‘New Horizons’ se acerca a Plutón


El Mundo

  • EXPLORACIÓN ESPACIAL Misión de la NASA al planeta enano
  • La nave espacial de la NASA comienza a estudiar este mundo helado, que en 2006 fue relegado a la categoría de planetas enanos del Sistema Solar
  • El próximo 14 de julio, la nave hará su máxima aproximación a Plutón

En el colegio aprendimos que Plutón era uno de los nueve planetas del Sistema Solar. Pero durante el verano de 2006, los astrónomos decidieron sacarlo de esa lista. Así, durante la asamblea de la Unión Astronómica Internacional (UAI) celebrada en Praga, se acordó incluir a Plutón en otra categoría de cuerpos celestes, la de los planetas enanos, que fue creada en esa misma reunión. Por entonces, la nave espacial de la NASA New Horizons se dirigía ya hacia este pequeño mundo helado.

Unos meses antes, el 19 de enero de 2006, había despegado desde Cabo Cañaveral (EEUU) a bordo de un cohete Atlas para emprender un fabuloso viaje por el Sistema Solar que le llevaría hasta el que era, por entonces, el único planeta al que no había llegado una nave espacial.

Tras una larga travesía de nueve años durante la que ha recorrido unos 4.600 millones de kilómetros, New Horizons comenzó ayer por fin a estudiar el sistema de Plutón. Aunque su máxima aproximación a este cuerpo celeste tendrá lugar el próximo 14 de julio, cuando se sitúe a unos 10.000 kilómetros de distancia de su superficie, la nave de la NASA ya está realizando mediciones y estudiándolo desde la distancia. A partir de abril tomará fotografías, tanto de Plutón como de Caronte, su luna de mayor tamaño.

A pesar de que haya quedado relegado a la categoría de planeta enano, su estudio sigue teniendo un gran valor para los científicos. Y es que los planetas enanos, con tamaños de entre 200 y 2.000 kilómetros, se consideran reliquias del Sistema Solar que tuvieron su origen hace unos 4.000 millones de años. Por ello, explorarlos aportará datos importantes sobre la formación planetaria.

Durante su viaje, la nave ha pasado cerca de las órbitas de varios planetas del Sistema Solar: Marte (en 2006), Júpiter (al que se aproximó en 2007), Saturno (2008), Urano (2011) y Neptuno (2014).

La fase principal de la misión de New Horizons, que tiene siete instrumentos, consistirá en estudiar la estructura y en analizar la composición de la superficie y atmósfera de Plutón. Se cree que se trata de un mundo gélido con temperaturas que deben rondar los -230ºC, por lo que se piensa que no podría albergar vida.

Un largo viaje por el Sistema Solar

«Aunque tenemos algunas ideas sobre lo que esperamos encontrar, no puedo dejar de pensar que la historia se repetirá de nuevo y nos veremos sorprendidos por algo nuevo, algo que no esperamos ver», señalaba hace unos días Dennis Reuter, científico de New Horizons, en un artículo publicado en la web de la NASA.

Así, Reuter recordaba cómo las sondas enviadas a distintos destinos del Sistema Solar habían realizado sorprendentes descubrimientos, como los volcanes de Io (una luna de Júpiter), los lagos de hidrocarburos en Titán(el mayor satélite de Saturno), los géiseres de nitrógeno de Tritón (luna de Neptuno), entre otros muchos ejemplos.

New Horizons también intentará averiguar si Plutón tiene otros satélites que no han sido descubiertos. De momento, han sido localizadas cinco lunas: Caronte, Hidra, Nix, Cerbero y Estigia. Las dos últimas fueron descubiertas recientemente, en 2011 y 2012 respectivamente.

La sonda ha pasado gran parte de su viaje durmiendo para ahorrar energía. En total, ha estado hibernando 1.873 días repartidos en 18 periodos de entre 36 y 202 días. El pasado 6 de diciembre, salió de su última fase de hibernación para comenzar el periodo más importante de su misión, cuyo coste total asciende a 700 millones de dólares (unos 603 millones de euros).

Una vez complete su trabajo en el sistema de Plutón, si se encuentra en buen estado su misión en esta remota región del Sistema Solar se prolongará para que pueda sobrevolar uno o dos cuerpos celestes más del Cinturón de Kuiper, de entre 40 y 90 kilómetros de diámetro.

Por cierto, New Horizons lleva un puñado de cenizas de Clyde Tombaug (1906-1997), el astrónomo estadounidense que descubrió Plutón en 1930. Además de las cenizas, con las que la NASA hará un homenaje póstumo al padre de este planeta enano, la agencia ha metido en la nave otros objetos simbólicos, entre los que figuran una bandera de EEUU, una moneda de Florida, un CD con los nombres de casi medio millón de personas que escribieron a su página web y una pieza del SpaceShipOne, el primer vehículo espacial privado. También las sondas Voyager, los objetos creados por el hombre que más distancia han recorrido (la Voyager 1 ha salido incluso del Sistema Solar) llevaban discos con una selección de información sobre la Tierra y mensajes por si caía en manos de alguna civilización extraterrestre.

Un telescopio de agujeros negros capta el Sol en rayos x de alta energía


El Pais

Las emisiones en rayos X de alta energía en el Sol se aprecian en esta imagen compuesta que sobrepone los datos del telescopio NuSTAR a los del SDO, ambos de la NASA. / NASA/JPL-Caltech/GSFC

Un telescopio de la NASA, el NuSTAR, diseñado y lanzado al espacio para observar agujeros negros, restos de supernova y otros fenómenos extremos en el universo, ha sido apuntado hacia un objeto mucho más corriente y cercano a la Tierra: el Sol. Se ha obtenido así la primera imagen de la estrella del Sistema Solar en rayos X de alta energía. Se trata de una foto sobrepuesta a otra tomada por el telescopio solar SDO, y en ella se aprecian emisiones de gas que superan los tres millones de grados centígrados.

Imagen de dos telescopios

La nueva foto del Sol, con datos del telescopio NuSTAR combinados con una imagen tomada por el  observatorio solar SDO, muestra en verde y azul las emisiones solares de alta energía (el verde corresponde a energías de entre 2 y 3 kiloelectronvoltios y el azul, entre 3 y 5 kiloelectronvoltios). El rojo corresponde a la luz ultravioleta captada por el SDO y desvela la presencia de material a baja temperatura en la atmósfera solar que está a un millón de grados, explica Caltech. Esta imagen desvela que parte de la emisiones más caliente captadas por el NuSTAR procede de localizaciones diferentes en las regiones activas de la corona de las de emisión más fría que capta el SDO.

“El NuSTAR nos dará una visión única del Sol, desde las partes más profundas hasta su atmósfera”, afirma David Smith, físico solar miembro del equipo del telescopio en la Universidad de California en Santa Cruz. Los científicos creen que con este observatorio podrían captar hipotéticas nanollamaradas solares.

La idea de apuntar el NuSTAR hacia el Sol surgió hace unos siete años, antes incluso de que el telescopio fuera lanzado al espacio (en junio de 2012), pero entonces pareció una propuesta descabellada, informa la NASA en un comunicado. “Al principio pensé que era una idea loca”, comenta Fiona Harrison, del Instituto de Tecnología de California (Caltech). “¿Por qué íbamos a apuntar hacia algo que está en nuestro patio trasero el telescopio de rayos X de alta energía más sensible que se ha construido jamás, diseñado para observar el universo profundo?”. Pero la idea fue ganando adeptos y acabó aprobándose.

No todo telescopio de rayos X puede permitirse mirar al Sol, que es demasiado brillante, por ejemplo, para el observatorio espacial Chandra, cuyos detectores resultarían afectados si lo intentara. Pero el NuSTAR (Nuclear Spectroscopic Telescope Array) no corre ese riesgo porque el Sol no es tan brillante en el rango de alta energía de rayos X para el que están diseñados sus detectores, y eso depende de la temperatura de la atmósfera solar, explican los expertos.

La temperatura de la capa más externa de la atmósfera solar desconcierta a los científicos. Su media está en torno al millón de grados centígrados, mientras que la superficie de la estrella ronda los 6.000 grados. No hay una explicación definitiva sobre este fenómeno. Es como si salieran llamas de cubitos de hielo, dicen los expertos del Jet Propulsion Laboratory (JPL), institución dependiente de Caltech que gestiona la misión NuSTAR para la NASA. Y este observatorio puede ayudar a resolver el enigma si llega a captar unas hipotéticas nanollamaradas que, de existir y en combinación con las llamaradas normales, podrían ser la fuente de ese alto calor en la corona. Las nanollamaradas serían versiones pequeñas de las bien conocidas llamaradas, que se generan en gigantescas erupciones de partículas cargadas y radiación de alta energía asociadas a las manchas solares. “El NuSTAR será muy sensible a la más leve actividad en rayos X que se produzca en la atmósfera solar, y eso incluye posibles nanollamaradas”, señala Smith.

Ilustración del telescopio NuSTAR, con el mástil desplegado de 10 metros de longitud para separar los modulo ópticos de los detectores. / NASA/JPL-Caltech

El Sol está ahora en su pico de actividad del actual ciclo de manchas (de unos 11 años de duración), que es el número 24 desde que comenzó su registro sistemático en 1755. Por ellos los especialistas confían en que obtendrán mejores datos en futuras imágenes, cuando la estrella se calme, señala Smith.

El NuSTAR, una misión pequeña de la NASA y de bajo coste (unos 140 millones de euros) en la que participan varias universidades e institutos de investigación estadounidenses, la Universidad Técnica de Dinamarca y la Agencia Italiana del Espacio (ASI), está en órbita casi ecuatorial alrededor de la Tierra, a poco más de 600 kilómetros de altura. Sus objetivos científicos esenciales son hacer un censo de estrellas colapsadas y agujeros negros de diferentes tamaños mediante la observación de regiones alrededor del centro de la Vía Láctea, pero asomándose también al cielo extragaláctico; cartografiar el material sintetizado en remanentes de supernovas jóvenes para comprender cómo se crean elementos químicos; y ayudar a desvelar qué alimenta los chorros relativistas de partículas que emergen de las galaxias activas más extremas que alojan agujeros negros supermasivos.

NASA muestra el viaje a un asteroide que revelaría origen del Sistema Solar


web

A través de un didáctico documental se muestra el plan de la misión “OSIRIS-REx”, la cual emprenderá viaje en 2016 rumbo a Bennu, el peligroso cuerpo estelar.

Tras el exitoso arribo de la misión Rosetta al cometa 67P, los ojos de la ciencia se han centrado en encontrar respuestas a diversas teorías sobre el origen de la vida en la Tierra a partir del análisis  de moléculas orgánicas que ayudan a entender un poco mejor el origen de nuestro Sistema Solar.

Sin embargo, esta no es la única misión que se encuentra en curso con el objetivo de proveer más información. La NASA se encuentra preparando “OSIRIS-REx” (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) y su destino en esta ocasión no es un cometa, sino un asteroide, que tiene el ‘simpático’ nombre de Bennu.

Bennu es un trozo de roca que ha permanecido relativamente intacto desde los orígenes del Sistema Solar. De ahí su brutal posible impacto en la ciencia.

A través de este video de la NASA (en inglés, con subtítulos) científicos explican de manera muy sencilla y didáctica el viaje de millones de años del asteroide y cómo OSIRIS planea llegar hasta él, tomar una muestra y volverse a la Tierra para que podamos analizarla.

El inicio de la misión está planificado para septiembre de 2016 y OSIRIS pasará un total de 2 años en el espacio antes de posarse sobre Bennu.

FUENTE: GIZMODO

¿Qué mundos componen el Sistema Solar?


ABC.es

  • Ocho planetas principales giran alrededor del Astro rey
¿Qué mundos componen el Sistema Solar?

ESA | El Sistema Solar

El Sistema Solar es el sistema planetario en el que se encuentra nuestro planeta, la Tierra. Tiene 4.568 millones de años y está formado por ocho planetas principales, incluido el nuestro, con sus lunas y todos los objetos de menor tamaño que giran en órbita por efecto de la gravedad alrededor de una única estrella, el Sol, que emite luz propia.

Los mundos más próximos al Astro rey son cuatro planetas rocosos (conocidos como planetas terrestres) de un tamaño relativamente pequeño: Mercurio, Venus, la Tierra y Marte, compuestos principalmente de roca y metal. Más allá de Marte se encuentra el cinturón de asteroides, una región poblada por millones de cuerpos rocosos procedentes de la época en que se formaron los planetas y en el que se encuentra el planeta enano Ceres.

En el extremo más alejado del cinturón de asteroides están los cuatro gigantes gaseosos o planetas jovianos: Júpiter, Saturno, Urano y Neptuno. Su tamaño es muy superior al de la Tierra, y están formados básicamente por hidrógeno y helio.

En 2006, la Unión Astronómica Internacional decidió desgradar a Plutón, hasta entonces considerado un planeta, el más lejano, a planeta enano debido a su pequeño tamaño, igual que otro objeto similar descubierto en 2005 llamado Eris. Más allá de Plutón existen más de 1.000 mundos helados semejantes a Eris, que forman el cinturón de Kuiper. Ahí están también otros dos planetas enanos: Haumea y Makemake. Todavía más lejos están los cometas de la nube de Oort.