Una supernova explotará y será visible desde la Tierra en 50 años


ABC.es

  • Para los científicos, supone una oportunidad única para presenciar la muerte de una estrella desde el principio. El resto quizás podamos de contemplarla a simple vista

Una supernova explotará y será visible desde la Tierra en 50 años

Archivo ABC | Recreación de la explosión de una supernova

Astrónomos de la Universidad Estatal de Ohio han calculado las probabilidades de que, en algún momento durante los próximos 50 años, una supernova de nuestra galaxia sea visible desde la Tierra. Y han llegado a la feliz conclusión de que hay un 100% de probabilidades de que esa supernova sea visible para los telescopios en forma de radiación infrarroja y un 20% de que el espectáculo estelar pueda contemplarse a simple vista en el cielo nocturno. Lo cuentan en la revista The Astrophysical Journal y su estudio está disponible en Arxiv.org.

El hallazgo, según sus autores, supone una gran noticia para los astrónomos, que disponen de cámaras de infrarrojos de alta potencia para apuntar al cielo en cualquier momento. El estudio sugiere que tienen una sólida oportunidad de hacer algo que nunca se ha hecho antes: detectar una supernova lo suficientemente rápido como para presenciar lo que sucede en el comienzo mismo de la muerte de una estrella. Una estrella masiva se convierte en supernova en el momento en que agota todo su combustible nuclear y su núcleo se colapsa, justo antes de que explote violentamente y lance la mayor parte de su masa al espacio.

«Vemos todas estas estrellas convertirse en supernovas en otras galaxias , y no entendemos completamente cómo sucede. Creemos que lo sabemos, pero eso no es verdad al 100%», dice Christopher Kochanek, profesor de astronomía en la Universidad de Ohio. «Hoy en día, las tecnologías han avanzado hasta el punto de que podemos aprender muchísimo más sobre supernovas si podemos pillar la siguiente en nuestra galaxia y estudiarla con todas las herramientas disponibles», explica.

El estudio de las supernovas en la Vía Láctea es posible gracias a que los astrónomos tienen detectores sensibles de neutrinos (partículas emitidas por el núcleo de una estrella en colapso ) y ondas gravitacionales (creadas por las vibraciones del núcleo de la estrella), que puede encontrar cualquier supernova en nuestra galaxia. La pregunta es si en realidad podemos ver la luz de la supernova, ya que vivimos en una galaxia llena de polvo, partículas de hollín que Kochanek compara con observar el espacio a través de los gases emanados por un camión, que absorben la luz y podrían ocultar una supernova de nuestra vista.

«Cada pocos días, tenemos la oportunidad de observar supernovas fuera de nuestra galaxia», dice Scott Adams, miembro del equipo investigador. «Pero solo hay algunas cosas que puedes aprender de ellas, mientras que una supernova galáctica nos mostraría mucho más. Nuestros detectores de neutrinos y detectores de ondas gravitacionales solo son lo suficientemente sensibles como para tomar medidas dentro de nuestra galaxia, donde creemos que una supernova ocurre solo una vez o dos veces por siglo».

Nuevo detector

En un escenario ideal, los detectores de neutrinos como el Super- Kamiokande (Super-K) en Japón podrían hacer sonar la alarma en el momento que detectan los neutrinos, e indicar la dirección de donde vengan las partículas. Entonces, los detectores infrarrojos podrían apuntar al lugar casi de inmediato, para capturar la supernova antes de que comience a brillar. Los observatorios de ondas gravitacionales podrían hacer lo mismo.

Pero como no todos los neutrinos vienen de supernovas -algunos llegan de reactores nucleares, la atmósfera de la Tierra o el Sol- es posible que el detector no reconozca la diferencia. «Necesitamos una manera de decir inmediatamente que la explosión se debe a una supernova», dice John Beacom , profesor de física y astronomía y director del Centro de Cosmología y Física de Astro- partículas en el estado de Ohio.

Expertos en neutrinos y coautores del artículo han construido un modelo a escala de un tipo especial de detector de neutrinos en una nueva cueva subterránea en Japón. El nuevo detector, que llaman Egads (Evaluación de acción de gadolinio en sistemas de detección) pesa 200 toneladas -mucho menor que las 50.000 toneladas de Super-K-, y se compone de un tanque de agua ultrapura. El agua se enriquece con una pequeña cantidad del elemento de gadolinio, que ayuda a registrar los neutrinos de supernova de una manera especial. Cuando un neutrino de una supernova de la Vía Láctea entra en el tanque, puede colisionar con las moléculas de agua y liberar energía, junto con algunos neutrones. El gadolinio tiene una gran afinidad por los neutrones y los absorberá y volver a emitir energía propia. El resultado sería una señal de detección seguida por otra una pequeña fracción de segundo más tarde, una señal de «latido» en el interior del depósito para cada neutrino detectado. Según los investigadores, esta señal permitirá a los científicos hacer anuncios de detecciones de supernovas más seguros y oportunos.

A simple vista

Para aquellos de nosotros que esperamos ver una supernova de la Vía Láctea con nuestros propios ojos, las posibilidades son más bajas y dependen de nuestra latitud en la Tierra. La última vez que ocurrió fue en 1604, cuando Johannes Kepler descubrió una unos 20.000 años luz de distancia en la constelación de Ofiuco. Se encontraba en el norte de Italia en ese momento .

Los astrónomos creen que la probabilidad de que una supernova galáctica sea visible a simple vista desde algún lugar en la Tierra en los próximos 50 años es aproximadamente del 20 a 50%. Los habitantes del hemisferio sur tienen más probabilidades, ya que pueden ver más de nuestra galaxia en el cielo nocturno. Las probabilidades empeoran a medida que se avanza hacia el norte.

«Con solo una o dos por siglo, la posibilidad de una supernova en la Vía Láctea es pequeña, pero sería una tragedia perdérsela y este trabajo tiene por objeto mejorar las posibilidades de estar listo para el evento científico de toda una vida», concluye Beacon.

La sincronización de los neutrinos es ‘made in Spain’


El Mundo

  • Serrano y Pablo Álvarez son los únicos españoles del experimento
  • Diseñaron el sistema de sincronización para medir la velocidad del neutrino
  • Midieron 25 partes por millón por encima de la velocidad de la luz
  • Reconoce meses de presión tras poner en duda la Teoría de la Relatividad
  • Los cientificos de MINOS en Chicago reharán el experimento a finales de año

La ciencia da un sinfín de nombres que revolucionaron las leyes establecidas hasta el momento. Del mismo modo que Galileo fue juzgado en su contemporaneidad o el mismo Einstein en sus inicios no recibió el beneplácito de forma inmediata, son ahora puestos en tela de juicio los últimos resultados del experimento de OPERA y el CERN (Centro Europeo de Investigación Nuclear) sobre la velocidad de los neutrinos, que parecen contradecir leyes de la física hasta ahora asumidas, como la imposibilidad para cualquier partícula de viajar más rápido que la luz.

Los investigadores no han tenido un año fácil. Con semblante relajado y tranquilo, disfrutando de las Navidades en familia en Castellón, parece haber logrado aliviar la carga mental de un año tremendamente extraordinario, de emociones contenidas y de una gran presión científica y laboral, sobre todo en el último cuatrimestre de 2011, desde que en septiembre fueron publicados los resultados del experimento OPERA, tras cinco años de trabajo.

Javier Serrano Pareja (Castellón, 1975), ingeniero electrónico y físico, cursó Secundaria en el centro IES Peñagolosa de Castellón desde donde puso rumbo a Lyon (Francia) para estudiar las dos carreras que le permitirían un contrato indefinido con el laboratorio europeo de Física de Partículas del CERN (Ginebra-Suiza), en 1998. Hoy en día, Javier coordina un equipo de 20 diseñadores de electrónica en el CERN, una institución internacional para la que trabajan alrededor de 3.000 personas.

Precisión ‘suiza’, entorno al nanosegundo

Javier Serrano y Pablo Álvarez (Calasparra, Murcia) son los dos únicos españoles miembros del equipo de científicos que logró medir que los neutrinos viajan a una velocidad de 25 partes por millón por encima de la velocidad de la luz. En concreto, Serrano y Álvarez son los diseñadores del sistema de sincronización del experimento (con una precisión entorno al nanosegundo, que es una milmillonésima parte de un segundo) entre Ginebra y Gran Sasso (Italia).

“Desde septiembre hasta el final de año hemos sufrido mucha presión. Llamadas a diario, miles de mails, muchos de ánimo, otros para contradecirnos o denostarnos, gente muy seria y otra menos, que te apoya o te rechaza, y a veces esa presión es complicada de llevar”, comenta.

El experimento consistió en enviar un haz de neutrinos desde Ginebra al laboratorio subterráneo de Gran Sasso -una distancia de 732 kilómetros en línea recta atravesando la tierra- y determinar, con relojes extremadamente sincronizados, el tiempo que tardaron, alrededor de 2,4 milésimas de segundo, un tiempo 60 nanosegundos menor que lo que tardaría la luz.

Pendientes de los resultados de MINOS si corroboran o rechazan

Comprende que el resultado de las investigaciones, controvertido y revolucionario, haya generado ansiedad, inquietud, incredulidad y quizás hasta rechazo en la sociedad y el mundo científico, y por eso, en tono pausado, desde la humildad y el escrupuloso respeto del método científico, explica que el CERN, consciente de que pueden haber cometido errores -pese a repetir ellos su propia experiencia- ha solicitado a equipos de científicos independientes del mundo “que lo reproduzcan, para corroborar o desmentir el resultado“, dice. “Si lo corroborasen, sería un indicio muy fuerte de que el resultado es correcto”.

Serrano comenta que el CERN y OPERA se han puesto en contacto, sobre todo, con el grupo de científicos del experimento MINOS (Main Injector Neutrino Oscillation Search), uno de los proyectos científicos en los que colabora el laboratorio Fermilab (Fermi National Accelerator Laboratory), que haría viajar los neutrinos entre dicho laboratorio, en las cercanías de Chicago (EEUU), y un detector en el norte del estado de Minnesota, a una distancia similar a la que separa Ginebra de San Sasso.

MINOS ha aceptado rehacer el experimento y supongo que, a finales de este año 2012, tendremos sus resultados”, indica.

Pero si alguien pensaba que con este paso científico llegarán después losviajes en el tiempo, el descubrimiento de cómo acabará el universo dentro de millones de años o la posibilidad de la criogenización, no es el objetivo, aunque el científico no dirá nunca un no rotundo si no lo sabe.

Ni viaje en el tiempo ni criogenización, de momento

Y es que, en la práctica de la vida diaria quizás signifique poca cosa el experimento en sí, hasta que se pueda desarrollar su utilidad o utilidades. Sin embargo, para la física, es una completa revolución, al contradecir potencialmente la Teoría de la Relatividad. “Cuando se descubrió la electricidad pasaron años hasta que se le encontró una utilidad. Las aplicaciones tardan años pero no son la finalidad en sí de la investigación básica. Si se confirma, podría ser el mayor descubrimiento en Física del último siglo“.

En cualquier caso, resalta Serrano que “nunca pensamos el experimento como una oposición a la Teoría de la Relatividad de Einstein. El resultado experimental está ahí. Si se confirma, serán otros especialistas los que deban encontrar una explicación. Debemos ser honestos con nuestro trabajo, y por eso, publicamos los resultados en una revista científica de acceso abierto, que maximiza la diseminación y garantiza un entorno adecuado para el escrutinio y la crítica”.

Y añade, “nuestra finalidad es el saber por el saber. Si alguien puede sacarle utilidad práctica, eso ya se verá. Otra cosa es que para llegar a este resultado tuvimos que desarrollar sistemas de sincronización muy sofisticados que pueden encontrar utilidad en otras áreas, pero esas aplicaciones prácticas no están en el origen del experimento”.

La práctica financiera High Frequency Trading

Una de esas aplicaciones podría ser el High Frequency Trading, una práctica financiera que consiste en detectar ínfimas diferencias del precio de un producto en diferentes mercados bursátiles y efectuar rápidas operaciones de compra y venta para conseguir una ganancia.

La sincronización entre los ordenadores que conforman estas redes de compra y venta rápida es un factor determinante en el éxito de las compañías que utilizan estas prácticas. Una aplicación que no parece entusiasmar a Serrano. Para él es muy importante el carácter público de estos trabajos. “La investigación financiada con fondos públicos es la única que tiene como objetivo primordial que la sociedad avance”.

Por eso, reflexiona, “apuesto por la financiación pública de la ciencia, porque garantiza libertad. Es fácil ver, estudiando un poco de historia, que los países que evolucionan son los que más invierten en investigación, tanto básica como aplicada, por eso me da mucha pena observar la situación que atraviesan instituciones como el Príncipe Felipe de Valencia o el Instituto Tecnológico Cerámico de Castellón. Hay que dedicar recursos a la ciencia. Aunque se haga difícil financiar experimentos que no tienen un impacto visible e inmediato en la vida cotidiana, en última instancia siempre redunda en beneficio de la sociedad”, concluye.

España financia en un 8,5% el CERN.

La apoteosis de los neutrinos


El Mundo

“Un experimento impulsa el sueño de los viajes a través del tiempo”. Éste fue el impresionante e insólito titular principal de la portada de EL MUNDO, en su edición impresa del sábado. Un día antes, en nuestra web, la principal noticia sobre los neutrinos que superaron el límite cósmico de la velocidad establecido por Albert Einstein no sólo se mantuvo durante toda la jornada como la más leída del día, sino que fue recomendada por 4.000 usuarios de Facebook, y casi 800 usuarios de Twitter.

Además, otras cuatro informaciones que publicó la sección de Ciencia de ELMUNDO.es sobre el mismo tema a lo largo del día también escalaron a las primeras posiciones de las noticias más populares. Y por si esto fuera poco, la narración en vivo de la presentación de los resultados del experimento que ofreció nuestra web, incluyendo una conexión con la retransmisión del seminario en Ginebra, tuvo una audiencia masiva.

En los 15 años que este periodista se ha dedicado a contar lo que se cuece en los laboratorios de todo el planeta, jamás me había sorprendido tan gratamente el inmenso impacto social que puede llegar a tener la ciencia en nuestra sociedad. Es cierto que no era la primera vez que la ciencia se convertía en el principal tema de una portada de nuestro periódico. También lo fueron la oveja Dolly, la secuenciación del genoma humano y la primera clonación de embriones humanos (que después resultó ser un fraude). Pero la fascinación por los neutrinosque habían desafiado a Einstein al viajar más rápido que la luz superó todas nuestras expectativas.

Fascinación por los neutrinos

Cuando mis compañeros y yo nos encontrábamos narrando en vivo la complejísima y enrevesada (aunque sin duda apasionante) presentación que hizo Dario Autiero de su experimento como si se tratara de un partido de fútbol seguido por miles de personas, creo que ni nosotros mismos nos podíamos creer del todo lo que estaba pasando. De repente, la física parecía haberse transformado en un espectáculo de masas, y nosotros éramos los comentaristas de este insólito ‘carrusel’ científico.

Pero, ¿por qué se produjo esta repentina fascinación por las partículas subatómicas? ¿Cómo podemos explicar la apoteosis de los neutrinos? ¿Puede alguien seguir manteniendo que la ciencia no interesa a ‘la gente’? ¿O tendrá razón Eduardo Punset, al que tantas veces hemos oído decir que “la irrupción de la ciencia en la cultura popular es un hecho imparable”?

Creo que, una vez pasado el ‘bombazo’ mediático, merece la pena reflexionar un poco sobre sus causas, por lo que demuestran sobre laatracción irresistible de la ciencia en la sociedad, cuando se produce una gran historia y los medios de comunicación se ocupan de contarla bien.

La naturaleza de la materia

En primer lugar, es evidente que el campo de investigación en el que trabajan los científicos del CERN toca una fibra especial a cualquiera que tenga un mínimo de curiosidad (y esto suele incluir a la mayoría de los primates de la especie ‘Homo sapiens’, los únicos animales que se pasan la vida haciéndose preguntas). Al fin y al cabo, estos espeleólogos del mundo subatómico se dedican a intentar desentrañar la naturaleza profunda de la materia (¿de qué está hecho todo?) y la relojería cósmica que mueve el universo (¿cómo funciona todo?).

Pero además, no sólo sus preguntas son inmensas, sino también las instalaciones donde se intentan buscar las respuestas. Las entrañas del CERN son gigantescas cavernas subterráneas donde se lanzan partículas subatómicas a velocidades inimaginables para resolver los grandes enigmas de la Física, y por tanto no es de extrañar que haya alimentado novelas de tanto impacto como ‘Angeles y Demonios’, de Dan Brown, que también fue llevada al cine. Por eso, casi todo lo que sale de esta gran instalación científica siempre tiene mucho tirón popular, como ya demostró hace tres años la inauguración del Gran Colisionador de Hadrones (LHC), conocido popularmente como la ‘máquina del Big Bang’.

Einstein, cuestionado

Sin embargo, en este caso al ‘sex appeal’ del CERN se le añadió el ‘shock’ de que podría derrumbarse el gran icono de la ciencia de todos los tiempos, el mismísimo Albert Einstein. En el imaginario popular, nadie encarna con más fuerza que el padre de la Teoría de la Relatividad la idea del genio científico, y por eso el desafío de los neutrinos podría simbolizar la caída de un mito, el posible fin de una era, un terremoto que podría volver a poner todo el edificio de la Física moderna patas arriba.

Y si a todo este cóctel le añadimos el ingrediente de viajar en el tiempo, una de las fantasías más antiguas de la ciencia ficción, el espectáculo estaba definitivamente servido. El propio Einstein había dicho que si pudiéramos enviar un mensaje a la velocidad de la luz, sería equivalente a “mandar un telegrama al pasado”. Y el gran físico español Álvaro de Rújula lo reafirmó el viernes en declaraciones a ELMUNDO.es. Con eso bastó, como dijo el titular de nuestra edición impresa, para “impulsar el sueño” de los viajes en el tiempo, aunque de momento sólo sea eso, una utopía alimentada por un experimento alucinante.

Puede que al final nadie pueda verificar sus resultados, y que todo se deba a un error. Puede que al final tengan razón las muchas voces científicas que han pedido cautela y han arrojado jarros de escepticismo sobre el impactante anuncio del CERN. Pero una cosa sí ha quedado ya totalmente demostrada: la ciencia interesa, la ciencia fascina, la ciencia está más viva que nunca.

El plomo español de un barco romano servirá para detectar neutrinos


El Pais

Tras permanecer 2.000 años en el agua, el metal ha perdido su radiactividad

Los científicos italianos embarcados en la física de partículas más avanzada se van a servir de lingotes de plomo de 2.000 años de antigüedad para sus experimentos a la caza de neutrinos. El Instituto Nacional de Física Nuclear de Italia ha recibido los lingotes, recuperados de un barco romano procedente de Cartagena que se hundió en el costa de Cerdeña, que utilizará para construir un escudo en su experimento CUORE, diseñado para estudiar los neutrinos y medir directamente su masa.

Tras 2.000 años en el fondo marino, este plomo se utilizará en el laboratorio Gran Sasso, a 1.400 metros bajo los Apeninos.

Al permanecer tanto tiempo en el agua, se ha reducido unas 100.000 veces la ya baja radiactividad natural del plomo, presente en uno de sus isótopos, el plomo 210, informa el instituto. El periodo de semidesintegración de este isótopo es de sólo 22 años, por lo que actualmente ha desaparecido prácticamente de los lingotes. Esta característica es la que hace que el plomo romano sea útil, ya que se puede utilizar para aislar experimentos que necesitan gran precisión, como los que se llevan a cabo en el Gran Sasso.

La parte de los lingotes que presentan inscripciones que denotan su origen romano será conservada y el resto se limpiará de las incrustaciones presentes y se fundirá para el escudo del experimento. Además, el instituto italiano estudiará con precisión las características del plomo y del cobre también hallado en el barco hundido para conocer mejor los materiales utilizados en la Edad de Bronce.

Es la segunda vez que se utiliza el plomo del naufragio para estudios de física de partículas. La carga del barco fue rescatada hace 20 años, en parte con fondos de la institución científica citada, que entonces recibió 150 lingotes. Ahora recibe otros 200.

“Seguro que el comandante de ese barco no se imaginó nunca que el plomo se utilizaría 2.000 años después para algo que tiene que ver con el Universo y las estrellas”, ha comentado Roberto Petronzio, presidente del Instituto Nacional de Física Nuclear.

“Este plomo”, ha explicado el científico Ettore Fiorini, director del experimento CUORE, “representa un material muy importante para proteger los aparatos utilizados para investigar acontecimientos muy poco frecuentes, un material que debe estar totalmente libre de contaminación radiactiva”. Por su parte, Lucia Votano, directora de los laboratorios subterráneos en Gran Sasso, opina: “Es estupendo que las tecnologías más avanzadas e innovadoras tengan que depender de la arqueología y de la tecnología de los antiguos romanos. El antiguo plomo recuperado del fondo del mar será esencial para proteger el experimento de la radiactividad natural, que podría ocultar el raro proceso de desintegración doble beta sin neutrinos”. El plomo de este origen se utiliza también en circuitos electrónicos y tiene gran demanda.

El barco

La nave romana que fue encontrada por un buceador en 1991 a 30 metros de profundidad era una navis oneraria magna, de 36 metros de eslora, construida entre el año 80 y el 50 antes de Cristo, cuya carga consistía en 2.000 lingotes de plomo. El barco procedía del área de Cartagena y se dirigía probablemente a Roma. También fueron hallados ánforas, anclas y otros objetos. El naufragio se produjo sin destrucción, lo que indica que quizás fue voluntario.

Los lingotes pesan unos 33 kilogramos cada uno y miden 46 centímetros de largo por nueve de alto. El plomo era un subproducto de la extracción de plata pero también tenía su mercado, muy importante, porque se utilizaba para fabricar numerosos objetos de uso cotidiano. Cada lingote tiene una inscripción y entre las distintas inscripciones está la de Carulius Hispalius, correspondiente a una familia de origen italiano que explotaba minas en España.