El ‘Hubble’ capta la ‘cruz de Einstein’ de una supernova


El Pais

1425633559_805536_1425633713_noticia_normal

Grupo de galaxias MACS J1149+2223, a 5.000 millones de años luz de distancia de la Tierra, con la supernova del fondo multiplicada por cuatro por el efecto de lente gravitacional, fotografiada por el `Hubble´. / NASA/ESA

El telescopio espacial Hubble ha fotografiado un sorprendente fenómeno: una lejana explosión de supernova multiplicada por cuatro debido a que su luz se curva por el efecto gravitatorio de una galaxia masiva, que está en un grupo galáctico también masivo interpuesto en la línea de visión desde la Tierra. Es la primera vez que se capta este efecto, denominado La Cruz de Einstein, con una supernova, aunque se conocía ya en decenas de casos de cuásares y de galaxias, anuncia la Agencia Europea del Espacio (ESA).

La galaxia que actúa como lente gravitacional para la supernova (bautizada por los científicos como Refsdal) está a una distancia de unos 5.000 millones de años luz de la Tierra y la explosión estelar, a unos 9.500 millones de años luz. La gran masa galáctica curva el espacio-tiempo y, por tanto, la luz de la supernova lejana al pasar junto a ella, formándose así, para el observador terrestre, las cuatro imágenes separadas de la explosión estelar con su luz magnificada.

“Fue una completa sorpresa”, explica Patrick Kelly, investigador de la Universidad de California en Berkeley (EE UU) y miembro del equipo GLASS que da a conocer el hallazgo esta semana en la revista Science, en una sección especial dedicada al centenario de la Teoría de la Relatividad General de Einstein. Kelly, en concreto, fue quien halló la supernova multiplicada por cuatro analizando datos tomados por el Hubble (de la NASA y la ESA) en noviembre de 2014. “Es un descubrimiento maravilloso: llevamos 50 años buscando una supernova con un fuerte efecto de lente gravitacional y ahora hemos encontrado una”, añade Alex Filippenko, de la Universidad de California en Berkeley. “Además de ser realmente genial, puede proporcionar mucha información astrofísica importante”, recalca.

“La supernova se ve unas 20 veces más brillante que su brillo natural”, añade Jens Hjorth, del Dark Cosmology Centre (Dinamarca), otro de los autores de la investigación. “Eso se debe al efecto combinado de dos lentes superpuestas:

el masivo grupo galáctico enfoca la luz de la supernova en tres rutas diferentes y una de ellas está precisamente alineada con una galaxia elíptica del grupo, y se produce un segundo efecto de lente gravitatoria”. Se crean así las cuatro imágenes.

En el proceso de curvatura del espacio-tiempo que desvía la luz está implicada la materia ordinaria de esas galaxias, pero también la enigmática materia oscura que supone el 27 % del universo y que nadie sabe qué es, señalan los investigadores. Por ello, la imagen multiplicada de la supernova no solo es un hallazgo atractivo sino que puede ayudar a estimar la cantidad y la distribución de dicha materia oscura en el grupo galáctico.

 


Teoría de la Relatividad

La Teoría General de la Relatividad de Einstein predice que la masa en el universo curvan el espacio-tiempo y, por tanto, la trayectoria de la luz, actuando como una lente que magnifica los objetos que están detrás de dicha masa al ser observados desde la Tierra, explican los expertos de la Universidad de California en Berkeley. El efecto se denomina lente gravitacional y se observó por primera vez en 1979.

La masa que curva la luz de un objeto más lejano puede ser una galaxia o un grupo de ellas. En el caso de que el objeto del fondo, la masa interpuesta y el observador no estén perfectamente alineados, la luz del primero pasa lejos de la segunda y se produce una lente débil que distorsiona la imagen del objeto lejano. También es así cuando la masa no es muy grande. Pero si el objeto del fondo es extenso —como una galaxia— y está justo detrás de la masa interpuesta, o casi, el efecto de lente gravitacional fuerte puede generar un aro luminoso, denominado Anillo de Einstein. La lente gravitacional fuerte y las fuentes luminosas puntuales a menudo producen múltiples imágenes, como la de la supernova que se ve cuatro veces formando la Cruz de Einstein captada por el Hubble, resumen los científicos de Berkeley.

El laboratorio donde ‘nacen’ los planetas


El Mundo

  • Un experimento en California trata de averiguar las condiciones especiales que se dieron en la evolución de los planetas
  • Pretenden resolver el misterio de la vida en la Tierra. ¿Surgió en el planeta o vino a bordo de cometas y asteroides?

Recreación artística de la formación de planetas.

El proceso de formación del Sistema Solar fue extremadamente largo y violento. Algunas teorías recientes sugieren que el Sol y la ‘nebulosa solar’ surgieron de los restos de supernovas cercanas, creando un disco protoplanetario en el que nacerían los planetas por medio de numerosas colisiones que duraron millones de años. Así, los planetas terrestres se formaron con altos puntos de fundición de silicatos y metales, mientras, el resto de protoplanetas, alejados del cinturón de asteroides y del calor, pudieron absorber más compuestos volátiles de hielo e hidrógeno, creando gigantes gaseosos y de hielo.

Estos procesos de formación planetaria son los que está reproduciendo un equipo de científicos en el Laboratorio Nacional Lawrence Livermore (LLNL), de la Universidad Berkeley en California, utilizando un láser impulsado por compresión, con el que recrean las violentas condiciones que se producen en el interior en el nacimiento de planetas similares a la Tierra, documentando las propiedades de los materiales que determinaron los procesos de formación y evolución de los planetas.

No se trata de reproducir un Sistema Solar en miniatura, sino que, según ha detallado a EL MUNDO Marius Millot, investigador principal de este experimento publicado este viernes en la revista Science, utilizan “uno de los láseres más potentes del mundo” dirigiéndolo hacia una muestra milimétrica de policristales y monocristales de stishovita, una forma de sílice de alta densidad (SiO2), induciendo sobre ella “un pulso muy corto, de una milmillonésima de segundo”. De esta forma, “la enorme expulsión de energía crea un plasma que envía una onda de compresión por ‘efecto cohete’ a nuestra muestra, generando una onda de choque que comprime y calienta los cristales a medida que se desplaza”.

Después, los científicos monitorizan la onda de choque mientras se mueve a través de la muestra, como una bola de nieve bajando una montaña, “con diagnósticos ópticos ultra-rápidos, para deducir las propiedades del sílice sometido a las altas presiones y temperaturas que existen en las profundidades de los planetas y durante los violentos eventos de su historia, como el gran impacto que creó la Luna”, concluye el físico.

El director del Observatorio Astronómico Nacional (IGN), Rafael Bachiller, reconoce los beneficios que este estudio tendría para la astrofísica. En su opinión, “las medidas en laboratorio del comportamiento de los materiales bajo las enormes presiones que reinan en los núcleos de los planetas son de sumo interés para comprender su formación, estructura y evolución interna“.

La clave para determinar estas características, según explica Millot, “es saber cuánto tiempo se mantienen sólidos sus materiales antes de fundirse por la presión, y ahora podemos medirlo en el laboratorio”, celebra. Gracias a este método, pudieron saber que la fusión del sílice se produce a 5 millones de atmósferas (500 GPa), una presión comparable a la presión entre el núcleo y el manto de una súper-Tierra, es decir, un planeta 5 veces mayor que nuestra Tierra, como Urano y Neptuno.

Los planetas rocosos podrían poseer desde hace muchos años profundos océanos de magma (roca fundida)

En combinación con anteriores mediciones sobre otros óxidos y sobre el hierro, los datos de esta investigación indican que los silicatos del manto y el núcleo de metal tienen temperaturas de fusión comparables por encima de 300-500 GPa, lo que sugiere que los grandes planetas rocosos podrían poseer desde hace muchos años profundos océanos de magma, en el que se pueden formar los campos magnéticos planetarios. Además, según señala Millot, “nuestra investigación sugiere que el sílice está probablemente en estado sólido en el interior de los núcleos de Neptuno, Urano, Saturno y Júpiter, lo que establece nuevas restricciones en los futuros modelos mejorados para la estructura y evolución de estos planetas”.

Sin embargo, Bachiller advierte que, aunque las simulaciones en laboratorio de procesos astrofísicos ganan en realismo cada día, siempre hay que tener cuidado con las analogías que se realizan en física, pues los sistemas astrofísicos son extremadamente complejos, ya que en ellos coexisten numerosos fenómenos físicos y químicos. Por ejemplo, en el interior de los planetas encontramos convección, turbulencia, inestabilidades de diferentes tipos, fenómenos magnéticos, y un largo etcétera. Esto es algo imposible de reproducir en un laboratorio“.

Stishovita sintética

Conseguir policristales y monocristales de stishovita no es nada fácil para los científicos, pues usualmente sólo se encuentran en pequeñas cantidades cerca de cráteres formados por impactos de meteoritos. Las muestras naturales, por lo tanto, son demasiado pequeñas y demasiado valiosas para utilizarlas en un experimento de este tipo. “¡Nuestro método es destructivo!“, bromea Millot. Con lo cual, sólo podrían utilizar cristales creados artificialmente.

Así, los avances de Millot no habrían sido posibles sin la labor de la científica Natalia Dobrovinskaia y su equipo de la Universidad de Bayreuth en Alemania, pues según asegura el físico estadounidense, “son las únicas personas en el mundo capaces de sintetizar este tipo de cristales para nuestro estudio”.

Para fabricarlos, utilizan una gran prensa, del tamaño de una habitación, con la que comprimen unos milímetros cúbicos de cuarzo a 130.000 atmósferas (14 GPa), sometiéndolos a miles de grados, hasta alcanzar las condiciones de temperatura y presión en la que la stishovita tiene su fase más estable del sílice. De forma más simple, Millot explica que en nuestras casas “hacemos lo mismo al crear cubos de hielo, poniéndolos en el congelador hasta que las temperaturas alcanzan condiciones bajo cero, que son en las que se alcanza la fase más estable del agua: el hielo”.

Los investigadores pretenden averiguar incógnitas como el origen de la vida en la Tierra. ¿Surgió en el planeta o se sembró en cometas y asteroides?

La stishovita es mucho más densa que el cuarzo o el sílice fundido, por lo que se mantiene más fría bajo compresión, característica que permitió a los investigadores medir la temperatura de fusión a una presión mucho mayor. Según explica Millot, la compresión dinámica de los materiales planetarios es algo muy importante para el éxito de la investigación, pues “en las profundidades del interior de los planetas, el hidrógeno es un fluido metálico, el helio puede comportarse como una lluvia, la sílice fluida es un metal y el agua puede estar en forma super-iónica”.

Estos comportamientos exóticos son los que Millot intenta responder con sus experimentos. “¿Por qué hay una gran cantidad de agua en la Tierra? ¿De dónde viene la vida? ¿Surgió en la Tierra o se sembró en cometas y asteroides?. Para este físico, el nacimiento y la evolución del Sistema Solar “sigue siendo un misterio”.

La violenta formación del Sistema Solar

Según una teoría reciente de la Universidad de Arizona, el Sol pudo haber surgido dentro del alcance de algunas supernovas cercanas, por lo que la onda de choque de estos agresivos fenómenos pudo haber desencadenado la formación de nuestra estrella al haber colapsado las regiones de sobre-densidad en la nebulosa circundante, conocida como ‘nebulosa protosolar’. Al colapso de esta nebulosa, el material de su interior se iría condensando a medida que giraba más y más rápido.
Entonces, los átomos colisionarían liberando energía en forma de calor que se iría acumulando en el centro de la masa. Cuando la gravedad, la presión del gas, los campos magnéticos y la rotación actuaron en ella, la nebulosa en contracción empezaría a allanar, creando un disco protoplanetario en el que el Sol terminaría de formarse. La estrella estaría rodeada por una nube de gas y polvo, la ‘nebulosa solar’, donde se formarían los ‘planetesimales’, cuerpos de 5 km de tamaño que irían creciendo por acreción, colisionando con granos de polvo que irían haciéndolos cada vez más grandes durante millones de años. Formados principalmente por componentes con altos puntos de fundición, como los silicatos y metales, estos cuerpos rocosos finalmente se convirtieron en planetas terrestres.
Mientras, Júpiter, con sus efectos gravitacionales, hacía imposible que se unieran objetos protoplanetarios presentes, dejando detrás el cinturón de asteroides. Además, al sobrepasar la línea de congelación donde más compuestos volátiles de hielo pudieron permanecer sólidos, Júpiter y Saturno juntaron más material que los planetas terrestres, convirtiéndose en gigantes gaseosos, mientras que Urano y Neptuno capturaron menos material, evolucionando como gigantes de hielo, con núcleos hechos por compuestos de hidrógeno.

Los polos magnéticos de la Tierra pueden invertirse en lo que dura una vida humana


ABC.es

  • En la actualidad, un fenómeno de este tipo podría causar estragos en las redes eléctricas y aumentar las tasas de cáncer
Los polos magnéticos de la Tierra pueden invertirse en lo que dura una vida humana

ICR | El campo magnético de la Tierra puede debilitarse y cambiar de dirección.

Imagine que un día se despierta y descubre que todas las brújulas apuntan hacia el sur en lugar del norte. Parece algo extraño, pero no lo es tanto. El campo magnético de la Tierra se ha movido de un tirón -aunque, por supuesto, no durante una sola noche– muchas veces durante la historia del planeta. Su campo magnético dipolar, como el de un imán de barra, mantiene aproximadamente la misma intensidad durante miles de millones de años, pero por razones desconocidas, de vez en cuando se debilita y cambia de dirección.

Hasta ahora, se creía que ese proceso duraba unos miles de años, pero un nuevo estudio realizado por un equipo internacional de científicos demuestra que la última inversión magnética registrada hace 786.000 años no tardó tanto en producirse, sino que ocurrió muy rápidamente, en menos de 100 años, más o menos lo que dura una vida humana.

«Es increíble la rapidez con la que vimos la inversión», dice Courtney Sprain, investigadora de la Universidad de California, Berkeley, coautora del estudio que será publicado en la revista International Journal Geophysical y que ya se puede consultar en internet.

Cáncer y redes eléctricas

Nuevas evidencias indican que la intensidad del campo magnético de la Tierra está disminuyendo 10 veces más rápido de lo normal, lo que lleva a algunos geofísicos a predecir un cambio dentro de unos pocos miles de años. A pesar de que una inversión magnética es un importante fenómeno de escala planetaria impulsado por la convección en el núcleo de hierro de la Tierra, los científicos aseguran que no hay catástrofes asociadas con inversiones pasadas que hayan quedado «escritas» en el registro geológico y biológico. Pero el mundo ha cambiado. Hoy, un proceso de este tipo podría causar estragos en nuestras redes eléctricas, generando corrientes que pueden hacerlas caer.

Y puesto que el campo magnético terrestre protege la vida de las partículas energéticas del Sol y los rayos cósmicos, los cuales pueden causar mutaciones genéticas, el debilitamiento o pérdida temporal del campo antes de un cambio permanente podría aumentar las tasas de cáncer. El peligro para la vida sería aún mayor si la inversión fuera precedida por largos períodos de comportamiento magnético inestable.

Sedimentos en Italia

El nuevo hallazgo se basa en el análisis de la alineación del campo magnético en capas de antiguos sedimentos lacustres ahora expuestos en la cuenca Sulmona de los Apeninos al este de Roma, en Italia. Debido a que los sedimentos del lago se depositaron a una velocidad alta y constante durante un período de 10.000 años, el equipo fue capaz de interpolar la fecha de la capa que muestra la inversión magnética, llamada reversión Brunhes-Matuyama, hace aproximadamente 786.000 años. Esta fecha es mucho más precisa que la de estudios anteriores, que colocan la inversión hace entre 770.000 y 795.000 años.

«Lo que es increíble es que se pasa de polaridad inversa a un campo que es normal con prácticamente nada en el medio, lo que significa que tuvo que haber sucedido muy rápidamente, probablemente en menos de 100 años», dice Paul Renne, profesor en Berkeley. Eso sí, «no sabemos si la próxima inversión se producirá tan rápido como lo hizo esta».

El nuevo hallazgo puede ayudar a los investigadores a entender cómo y por qué el campo magnético de la Tierra invierte su polaridad de forma episódica.

El ‘Hubble’ fotografía una supernova que sorprende por su brillo


El Pais

  • La explosión estelar fue descubierta por unos estudiantes el pasado enero

La supernova SN 2014J fotografiada por el telecopio ‘Hubble’ el pasado 31 de enero y ampliada sobre la imagen-mosaico de la galaxia M82 que captó el mismo observatorio espacial en 2006. / nasa/esa/a.goobar (stockholm university)

La explosión de una estrella que descubrieron, por pura casualidad, unos estudiantes británicos hace poco más de un mes se ha convertido en punto de interés de astrónomos en todo el mundo, que incluso han apuntado el telescopio espacial Hubble para verla. Es la supernova más brillante que se ha detectado desde hace 27 años y todavía es visible en el cielo con telescopios modestos de aficionado. Además, es de un tipo especial (Ia) que utilizan los cosmólogos para medir grandes distancias en el universo. Pero el cielo suele dar sorpresas a los científicos y, en este caso, no solo a los jóvenes de la Universidad de Londres que fueron los primeros en verla. Un grupo de especialistas de la Universidad de Berkeley (EE UU) está estudiando la supernova, que estalló el pasado 21 de enero y que se denomina oficialmente SN 2014J, y ha visto que es extraña porque incrementó su brillo más rápido de lo esperado. “Puede que nos esté enseñando algo de las supernovas de tipo Ia que los teóricos necesiten comprender; tal vez lo que pensábamos que era un comportamiento normal de una de estas supernovas sea lo anormal”, señala Alex Filippenko, líder del equipo.

Una enana blanca tiene tanta masa como el Sol y el tamaño de la Tierra

Una supernova es una colosal explosión que sufre una estrella cuando se desestabiliza. La descripción estándar de estos fenómenos habla de astros inmensos, mucho más masivos que el Sol, que, cuando las reacciones nucleares de su interior han consumido todo su hidrógeno y se han quedado sin combustible colapsan desencadenando todo el proceso de explosión en forma de supernova. Pero las de tipo Ia son distintas: son estrellas enanas blancas, viejas y muy densas, tanto que en ellas una masa como la del Sol está comprimida en un tamaño equivalente al de la Tierra; si roban materia a un astro compañero o si se fusionan dos de ellas, pueden superar un cierto umbral de masa a partir del cual dejan de ser estables y se desencadena la colosal explosión.

Es lo que vieron un puñado de alumnos de la Universidad de Londres en la noche del 21 de enero pasado, durante unas prácticas, en las imágenes que lograron captar de la galaxia M82, entre las nubes de aquella noche poco adecuada para la astronomía observacional. A Steve Fossey, el profesor, le sorprendió el punto brillante que aparecía en la galaxia bien conocida, hizo unas comprobaciones y resultó que se trataba de una supernova.

Una vez que se confirmó oficialmente, astrónomos de todo el mundo apuntaron sus telescopios hacia M82, situada a unos 11,5 millones de años luz de la Tierra. También revisaron sus archivos de los días precedentes, y resultó que la SN 2014J estaba en fotografías tomadas antes. En concreto, el telescopio automático Katzman, en el observatorio Lick (California), la había captado el 14 de enero, solo unas 37 horas después de que fuera visible desde la Tierra. Incluso un astrónomo aficionado japonés la habría captado unas horas antes. Unos días después, el 31 de enero la fotografió el Hubble, cuando estaba cerca de su máximo de brillo.

El equipo de Filippenko explica que la SN 2014J muestra el mismo brillo rápido que otra supernova, la SN 2013dy, que descubrió el telescopio Katzman el año pasado. “Dos de las tres supernovas de tipo Ia más recientes y mejor observadas son extrañas, lo que nos da nuevas pistas sobre cómo explotan las estrellas”, comenta el astrónomo de Berkeley, haciendo referencia a un tercer objeto de este tipo, la SN 2011fe, de hace tres años, y cuyo comportamiento se ajustó mejor a los modelos teóricos y a observaciones precedentes. Estos investigadores presentan sus conclusiones sobre la supernova del 21 de enero en The Astrophysical Journal Letters.

Los científicos usan los estallidos de tipo Ia para medir distancias en el cielo

El valor de las Ia como buen mojón de medida de distancias en el universo se debe a que estas supernovas generan el mismo brillo más o menos, lo que permite estimar la distancia a la que está la galaxia en la que se producen estas explosiones (igual que se puede calcular la distancia de una bombilla encendida si se conoce su potencia). Y fue precisamente con dos investigaciones independientes que utilizaron, en los años noventa, estas supernovas para medir distancias en el cosmos y la velocidad de recesión de las respectivas galaxias como se descubrió la inesperada aceleración de la expansión del universo. Los principales responsables de los dos equipos (Adam Riess, Brian Schmidt y Saul Perlmutter) recibieron el Premio Nobel de Física en 2011, con la aceleración (supuestamente debida al efecto de la denominada energía oscura) convertida ya en el tema más candente y misterioso de la cosmología actual.

El comportamiento anómalo de la última supernova “no contradice los resultados de la aceleración de la expansión”, dice Filippenko, “al refinar la comprensión de las explosiones de tipo Ia se pueden mejorar las medidas de distancias y hacer cálculos más precisos de la tasa de expansión, acotando mejor la naturaleza de la energía oscura”.

Otros científicos de Berkeley y de la Universidad Nacional Australiana han investigado el umbral de masa definido a partir del cual la estrella enana blanca explota en una supernova Ia, umbral por el que su brillo sería tan uniforme. Richard Scalzo y sus colegas afirman ahora que estas estrellas explotan a partir de un rango de masas un poco más amplio que ese umbral. Su investigación, que se publicará en la revista Monthly Notices of the Royal Society británica, ayudará a perfilar los modelos teóricos existentes sobre estas supernovas.

De la NASA al museo


ElPais.es

  • El dúo británico Semiconductor trabajó mano a mano con científicos para crear una visualización artística de los campos magnéticos

Recrear en la cabeza una imagen de los fenómenos físicos que sobrepasan los límites de la percepción humana es una actividad que puede dar lugar a unas agujetas mentales permanentes. No todo el mundo es capaz de abstraer lo inmaterial para crear formas aprehensibles por los sentidos. El dúo británico Semiconductor sí lo es. En 2007, surgido de una residencia de artistas en los laboratorios de la NASA en la Universidad de California en Berkeley, crearon la película Magnetic Movie, una propuesta de representación de los imperceptibles campos magnéticos, las regiones donde el movimiento de cargas eléctricas crea una fuerza.

“Estuvimos conviviendo con científicos durante cinco meses”, cuenta al teléfono Joe Gerhardt, la mitad de la pareja que completa Ruth Jarman. “Y aunque no tenemos formación científica, vimos la oportunidad y nos lanzamos”. Durante ese periodo, siguieron la evolución del trabajo de los investigadores sobre el viento solar y la creación de campos magnéticos. “Ideamos visualizaciones para comprender este fenómeno que hace que las brújulas apunten al norte, pero que no puede verse”. Lo que no quiere decir que un campo magnético sea como ellos lo pintan. “Es una suerte de ciencia ficción”.

Para poder captar lo indiscernible, es imperativo recurrir a la tecnología. “Es una manera de expandir nuestros cuerpos”, señala Gerhardt. Por eso, la pareja de artistas, en vez de utilizar pinceles o brochas, se vale del software como material: “Pintamos a base de unos y ceros”.

Algunos científicos y parte del público no se tomaron a bien la propuesta de Magnetic Movie. “Había quien nos decía que teníamos que advertir que esto es arte, no ciencia”. Pero ello no impidió que el vídeo corriera viral por la Red. De lo aprendido en la NASA, Semiconductor extrajo tanta información que otras obras posteriores giran en torno al mismo tema. 20Hz, una pieza que expusieron entre marzo y junio pasados en la LABoral de Gijón, muestra una representación formal de los sonidos del viento solar; y en Heliocentric tratan la idea de la familiaridad con la que convivimos con el hecho de que la Tierra rota aunque no somos capaces de sentirlo. Y es que hacer arte también tiene su ciencia.