La puerta a la física del futuro


El Mundo

  • El proyecto para construir el sustituto del LHC que descubrió el bosón de Higgs entra en la fase final
Vista del interior de uno de los detectores de partículas del Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza. CERN

Vista del interior de uno de los detectores de partículas del Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza. CERN

El bosón de Higgs era la última pieza del puzzle que compone el Modelo Estándar de la Física. Su hallazgo en 2012 se publicó con una certeza de cinco sigmas, es decir con un 99,9% de probabilidades de que se trate del verdadero bosón de Higgs del Modelo Estándar. Así que aún falta completar el análisis de sus propiedades para asegurar al 100% que se trata de la esquiva partícula y no de otro tipo de bosón. Pero si la ronda de colisiones que se están produciendo hoy en día en el LHC (el Gran Colisionador de Hadrones del CERN de Ginebra) confirma los resultados, se podría dar por cerrado el marco conceptual que rige la física conocida.

Pero eso sólo explicaría el 5% del Universo. El 95% restante son preguntas abiertas que aún no sabemos contestar: ¿Qué es la materia oscura? ¿Por qué existe una asimetría entre la materia y la antimateria? ¿Qué es la energía oscura que supone el 70% del Cosmos?… Para responder a esas cuestiones los físicos necesitan aceleradores capaces de imitar lo más posible las condiciones que se dieron instantes después del Big Bang, cuando las colisiones de partículas se producían con una energía inmensa.

Por ese motivo, el siguiente proyecto que está desarrollando el CERN (el laboratorio europeo de física de partículas) busca multiplicar casi por 10 la energía del acelerador actual, aumentando desde los 13 TeV hasta los 100 TeV. De acuerdo con la más que célebre formulación de Albert Einstein -E=mc2-, se trata de incrementar la energía para generar partículas con mayores masas, más parecidas a las que se generaron tras el Big Bang. Eso abriría una nueva ventana hacia el universo desconocido y permitiría avanzar en el conocimiento de las partículas que forman la materia oscura o, quizá, permita saber por dónde empezar para estudiar la energía oscura, uno de los mayores misterios del Universo a los que los físicos aún no saben ni cómo meter mano. «O quizá encontremos algo completamente nuevo que no está aún en los lápices de los físicos teóricos. Y eso también sería genial», comentó el exdirector del CERN, Rolf Heuer, a este diario.

«Es una gran infraestructura que nos tiene que llevar al siguiente paso del conocimiento. Es de una dimensión de casi 4 veces mayor que el LHC y tendrá que ser construido con grandes retos tecnológicos», explicó Francis Pérez, jefe de aceleradores del sincrotrón ALBA de Barcelona, en la presentación de la conferencia El Futuro Colisionador Circular: desafíos técnicos y detectores impartida por Michael Benedikt, jefe del Estudio del Futuro Colisionador Circular, y por José Miguel Jiménez, director del Departamento de Tecnología del CERN, en la Fundación BBVA.

De momento, es un proyecto en fase de estudio, no es una iniciativa financiada que esté ya en marcha. Pero el grupo que lidera Benedikt ya tiene muy avanzada una propuesta para construir un gran acelerador de partículas en un túnel de 100 kilómetros de diámetro en el área de Ginebra. La idea es aprovechar las instalaciones que ya existen en el CERN, que podrían servir como inyectores del futuro colisionador que se instalaría en la misma localización en la que se encuentra el LHC, de 27 kilómetros de diámetro.

Por ese motivo no se puede construir en otro emplazamiento y no se ha abierto a la comunidad internacional un concurso para la búsqueda de localizaciones. Este tipo de grandes aceleradores necesitan un preacelerador, vamos a llamarlo. Hay que verlo como la caja de cambios de un coche, ejemplifican los investigadores que trabajan en el proyecto. Si quieres conducir a 250 kilómetros por hora, no puedes hacerlo con una única marcha, necesitas meter primera, después segunda, tercera y así hasta la última que te permite ir a esa velocidad. Con los aceleradores ocurre exactamente igual. Cada acelerador puede cubrir un determinado rango de energía y hay que aprovechar esa energía que ya se alcanza en el LHC actual, y también la que se alcanzará en la siguiente fase, llamada High Luminosity LHC y que se extenderá hasta mediados de la década de 2030.

Aún queda un largo camino hasta que la fase de estudio actual se transforme en un proyecto aprobado en la Estrategia Europea de Física de Partículas en 2020 y se comience a construir a mediados de esa década. En el más optimista de los escenarios las primeras colisiones de este gran acelerador no se producirían hasta después del año 2040.

Los investigadores e ingenieros están trabajando aún en dos escenarios posibles basados en la misma infraestructura. Una es un colisionador de hadrones, similar al LHC, pero que permitiría dar un salto de un orden de magnitud en los límites de la física que se pueden cubrir con la máquina actual. Y la segunda opción sería un colisionador de electrones y positrones leptones, como el que ya sirvió de predecesor del actual LHC. Esta alternativa cubriría un área diferente desde el punto de vista de la física y permitiría tomar medidas con mayor calidad y precisión que las que produce un colisionador de hadrones ya que produce colisiones más limpias. Eso se definirá en la próxima Estrategia Europea, que se adoptará probablemente a partir del año 2020. Si la financiación lo permite, una posibilidad es reproducir lo que ya se hizo cuando el colisionador de electrones y positrones sirvió de base para el LHC, pero en este caso con mayor energía.

«Tenemos que tener en cuenta la viabilidad técnica, pero también económica. Puedes tener una máquina maravillosa, pero si no la puedes pagar o mantener no sirve de nada. En la actualidad, estamos dedicando un tercio del presupuesto de 1.200 millones de euros sólo a estas actividades», asegura José Miguel Jiménez.

El segundo gran impacto que formó la Luna


ABC.es

  • La cara oculta podría haber sido modelada por la colisión con un segundo satélite de la Tierra

cara-oculta-luna-kv3-620x349abc

La cara oculta de la Luna podría haber sido modelada por la colisión con un segundo satélite de la Tierra, según acaba de revelar un estudio realizado por investigadores de la Universidad de California en Santa Cruz. Y eso podría explicar las sorprendentes diferencias entre las caras visible y oculta de la Luna, un misterio cuya solución se ha resistido durante décadas a los intentos de explicación de los científicos. La cara vista es, en efecto, notablemente plana, mientras que la oculta, con una corteza mucho más gruesa, está llena de colinas y montañas.

Ningún ser humano ha visitado aún la cara oculta de nuestro satélite. Allí, sin embargo, cerca del Polo Sur lunar, se encuentra la segunda mayor estructura de impacto de todo el Sistema Solar, solo superada por cuenca Borealis, de Marte. Se trata de la cuenca Aitken, con casi 2.500 km. de ancho y 13 km. de profundidad.

El nuevo estudio se basa en el modelo de “Impacto gigante” para el origen de la Luna, según el cual un objeto del tamaño del planeta Marte chocó contra la Tierra en algún momento de la juventud del Sistema Solar. La enorme cantidad de escombros y rocas lanzados al espacio por el colosal impacto terminaron uniéndose para formar la Luna. El estudio, sin embargo, sugiere que el mismo impacto contra la Tierra tambièn creó un segundo satélite, más pequeño, que al principio compartió órbita con la Luna, pero que terminó cayendo sobre ella y proporcionando así a una de sus caras una capa “extra” de corteza sólida de varias decenas de km. de grosor.

“Nuestro modelo -explica Erik Asphaugh, profesor de Ciencias Planetarias de la Universidad de California en Santa Cruz- funciona muy bien junto a los modelos de la formación de la Luna debido a un gran impacto, que predicen que tras la colisión debió de haber una cantidad realmente masiva de escombros alrededor de la Tierra, y más tarde alrededor de la Luna recién formada. Eso concuerda con lo que sabemos sobre la estabilidad dinámica de un sistema de esas características, sobre el tiempo que tardó la Luna en formarse y sobre la edad de las propias rocas lunares”.

Aspaugh, que junto a Martin Jutzi ya había realizado simulaciones informáticas sobre cómo pudo formarse la Luna tras la gigantesca colisión, afirma que la formación de otras “lunas compañeras” es un resultado bastante común de muchas de las simulaciones.

Lenta y sin cráter

En el estudio, Asphaug y Jutzi rizaron el rizo y utilizaron simulaciones del impacto de la Luna ya formada con un segundo satélite más pequeño (con cerca de un tercio de su masa) para estudiar la dinámica de esa colisión y rastrear la evolución y distribución del material lunar tras la catástrofe. El resultado fue que en las colisiones a baja velocidad, el impacto entre los dos satélites no llega a formar un cráter y tampoco hace que se funda una gran cantidad de roca. Sencillamente, la mayor parte del material impactante se acumula sobre el hemisferio que recibe la colisión y se convierte en una nueva capa de roca sólida, formando una región montañosa comparable en extensión con las elevaciones que realmente existen en la cara oculta de la Luna.

“Por supuesto -puntualiza Asphaug- los modeladores de impactos tratan de explicarlo todo con colisiones. Pero en este caso se requiere una colisión muy extraña: lenta, que no forme un cráter y que acumule todo el material en una sola cara. Y eso es algo nuevo en lo que pensar”.

La hipótesis de los investigadores es que la segunda luna quedó atrapada, al principio, en uno de los puntos Lagrange (en los que las gravedades de ambos cuerpos se equilibran) del sistema, pudiendo compartir así la órbita lunar durante un tiempo. Después, al alejarse la órbita lunar de la Tierra, el delicado equilibrio gravitatorio se rompió y las dos lunas chocaron.

“La colisión -afirma Jutzi- pudo haberse producido en cualquier lugar de la Luna. El cuerpo resultante estaba desequilibrado y tuvo que reorientarse de modo que una sola cara apunta siempre hacia la Tierra”.

El modelo explica también las variaciones que existen en la composición de la corteza lunar. En la cara vista, predomina un tipo de terreno relativamente rico en potasio, tierras raras y fósforo. Todos ellos, así como el torio y el uranio, debieron de concentrarse en el océano de magma que se mantuvo como roca fundida y que finalmente se solidificó bajo la gruesa corteza lunar.

En las simulaciones, la colisión aplasta, literalmente esta capa rica en potasio y fósforo en el hemisferio opuesto, preparando el escenario para el tipo de geología que hoy predomina en el lado más cercano de la Luna.