El laboratorio donde ‘nacen’ los planetas


El Mundo

  • Un experimento en California trata de averiguar las condiciones especiales que se dieron en la evolución de los planetas
  • Pretenden resolver el misterio de la vida en la Tierra. ¿Surgió en el planeta o vino a bordo de cometas y asteroides?

Recreación artística de la formación de planetas.

El proceso de formación del Sistema Solar fue extremadamente largo y violento. Algunas teorías recientes sugieren que el Sol y la ‘nebulosa solar’ surgieron de los restos de supernovas cercanas, creando un disco protoplanetario en el que nacerían los planetas por medio de numerosas colisiones que duraron millones de años. Así, los planetas terrestres se formaron con altos puntos de fundición de silicatos y metales, mientras, el resto de protoplanetas, alejados del cinturón de asteroides y del calor, pudieron absorber más compuestos volátiles de hielo e hidrógeno, creando gigantes gaseosos y de hielo.

Estos procesos de formación planetaria son los que está reproduciendo un equipo de científicos en el Laboratorio Nacional Lawrence Livermore (LLNL), de la Universidad Berkeley en California, utilizando un láser impulsado por compresión, con el que recrean las violentas condiciones que se producen en el interior en el nacimiento de planetas similares a la Tierra, documentando las propiedades de los materiales que determinaron los procesos de formación y evolución de los planetas.

No se trata de reproducir un Sistema Solar en miniatura, sino que, según ha detallado a EL MUNDO Marius Millot, investigador principal de este experimento publicado este viernes en la revista Science, utilizan “uno de los láseres más potentes del mundo” dirigiéndolo hacia una muestra milimétrica de policristales y monocristales de stishovita, una forma de sílice de alta densidad (SiO2), induciendo sobre ella “un pulso muy corto, de una milmillonésima de segundo”. De esta forma, “la enorme expulsión de energía crea un plasma que envía una onda de compresión por ‘efecto cohete’ a nuestra muestra, generando una onda de choque que comprime y calienta los cristales a medida que se desplaza”.

Después, los científicos monitorizan la onda de choque mientras se mueve a través de la muestra, como una bola de nieve bajando una montaña, “con diagnósticos ópticos ultra-rápidos, para deducir las propiedades del sílice sometido a las altas presiones y temperaturas que existen en las profundidades de los planetas y durante los violentos eventos de su historia, como el gran impacto que creó la Luna”, concluye el físico.

El director del Observatorio Astronómico Nacional (IGN), Rafael Bachiller, reconoce los beneficios que este estudio tendría para la astrofísica. En su opinión, “las medidas en laboratorio del comportamiento de los materiales bajo las enormes presiones que reinan en los núcleos de los planetas son de sumo interés para comprender su formación, estructura y evolución interna“.

La clave para determinar estas características, según explica Millot, “es saber cuánto tiempo se mantienen sólidos sus materiales antes de fundirse por la presión, y ahora podemos medirlo en el laboratorio”, celebra. Gracias a este método, pudieron saber que la fusión del sílice se produce a 5 millones de atmósferas (500 GPa), una presión comparable a la presión entre el núcleo y el manto de una súper-Tierra, es decir, un planeta 5 veces mayor que nuestra Tierra, como Urano y Neptuno.

Los planetas rocosos podrían poseer desde hace muchos años profundos océanos de magma (roca fundida)

En combinación con anteriores mediciones sobre otros óxidos y sobre el hierro, los datos de esta investigación indican que los silicatos del manto y el núcleo de metal tienen temperaturas de fusión comparables por encima de 300-500 GPa, lo que sugiere que los grandes planetas rocosos podrían poseer desde hace muchos años profundos océanos de magma, en el que se pueden formar los campos magnéticos planetarios. Además, según señala Millot, “nuestra investigación sugiere que el sílice está probablemente en estado sólido en el interior de los núcleos de Neptuno, Urano, Saturno y Júpiter, lo que establece nuevas restricciones en los futuros modelos mejorados para la estructura y evolución de estos planetas”.

Sin embargo, Bachiller advierte que, aunque las simulaciones en laboratorio de procesos astrofísicos ganan en realismo cada día, siempre hay que tener cuidado con las analogías que se realizan en física, pues los sistemas astrofísicos son extremadamente complejos, ya que en ellos coexisten numerosos fenómenos físicos y químicos. Por ejemplo, en el interior de los planetas encontramos convección, turbulencia, inestabilidades de diferentes tipos, fenómenos magnéticos, y un largo etcétera. Esto es algo imposible de reproducir en un laboratorio“.

Stishovita sintética

Conseguir policristales y monocristales de stishovita no es nada fácil para los científicos, pues usualmente sólo se encuentran en pequeñas cantidades cerca de cráteres formados por impactos de meteoritos. Las muestras naturales, por lo tanto, son demasiado pequeñas y demasiado valiosas para utilizarlas en un experimento de este tipo. “¡Nuestro método es destructivo!“, bromea Millot. Con lo cual, sólo podrían utilizar cristales creados artificialmente.

Así, los avances de Millot no habrían sido posibles sin la labor de la científica Natalia Dobrovinskaia y su equipo de la Universidad de Bayreuth en Alemania, pues según asegura el físico estadounidense, “son las únicas personas en el mundo capaces de sintetizar este tipo de cristales para nuestro estudio”.

Para fabricarlos, utilizan una gran prensa, del tamaño de una habitación, con la que comprimen unos milímetros cúbicos de cuarzo a 130.000 atmósferas (14 GPa), sometiéndolos a miles de grados, hasta alcanzar las condiciones de temperatura y presión en la que la stishovita tiene su fase más estable del sílice. De forma más simple, Millot explica que en nuestras casas “hacemos lo mismo al crear cubos de hielo, poniéndolos en el congelador hasta que las temperaturas alcanzan condiciones bajo cero, que son en las que se alcanza la fase más estable del agua: el hielo”.

Los investigadores pretenden averiguar incógnitas como el origen de la vida en la Tierra. ¿Surgió en el planeta o se sembró en cometas y asteroides?

La stishovita es mucho más densa que el cuarzo o el sílice fundido, por lo que se mantiene más fría bajo compresión, característica que permitió a los investigadores medir la temperatura de fusión a una presión mucho mayor. Según explica Millot, la compresión dinámica de los materiales planetarios es algo muy importante para el éxito de la investigación, pues “en las profundidades del interior de los planetas, el hidrógeno es un fluido metálico, el helio puede comportarse como una lluvia, la sílice fluida es un metal y el agua puede estar en forma super-iónica”.

Estos comportamientos exóticos son los que Millot intenta responder con sus experimentos. “¿Por qué hay una gran cantidad de agua en la Tierra? ¿De dónde viene la vida? ¿Surgió en la Tierra o se sembró en cometas y asteroides?. Para este físico, el nacimiento y la evolución del Sistema Solar “sigue siendo un misterio”.

La violenta formación del Sistema Solar

Según una teoría reciente de la Universidad de Arizona, el Sol pudo haber surgido dentro del alcance de algunas supernovas cercanas, por lo que la onda de choque de estos agresivos fenómenos pudo haber desencadenado la formación de nuestra estrella al haber colapsado las regiones de sobre-densidad en la nebulosa circundante, conocida como ‘nebulosa protosolar’. Al colapso de esta nebulosa, el material de su interior se iría condensando a medida que giraba más y más rápido.
Entonces, los átomos colisionarían liberando energía en forma de calor que se iría acumulando en el centro de la masa. Cuando la gravedad, la presión del gas, los campos magnéticos y la rotación actuaron en ella, la nebulosa en contracción empezaría a allanar, creando un disco protoplanetario en el que el Sol terminaría de formarse. La estrella estaría rodeada por una nube de gas y polvo, la ‘nebulosa solar’, donde se formarían los ‘planetesimales’, cuerpos de 5 km de tamaño que irían creciendo por acreción, colisionando con granos de polvo que irían haciéndolos cada vez más grandes durante millones de años. Formados principalmente por componentes con altos puntos de fundición, como los silicatos y metales, estos cuerpos rocosos finalmente se convirtieron en planetas terrestres.
Mientras, Júpiter, con sus efectos gravitacionales, hacía imposible que se unieran objetos protoplanetarios presentes, dejando detrás el cinturón de asteroides. Además, al sobrepasar la línea de congelación donde más compuestos volátiles de hielo pudieron permanecer sólidos, Júpiter y Saturno juntaron más material que los planetas terrestres, convirtiéndose en gigantes gaseosos, mientras que Urano y Neptuno capturaron menos material, evolucionando como gigantes de hielo, con núcleos hechos por compuestos de hidrógeno.

La NASA tendrá su «puente aeroespacial» en 2017


ABC.es

  • La agencia aeroespacial de EE.UU. confía en dos empresas privadas -Boeing y SpaceX- para acabar con la dependencia de los cohetes rusos para mandar misiones a la Estación Espacial Internacional
La NASA tendrá su «puente aeroespacial» en 2017

Boeing Boeing y Space X han sido seleccionadas para desarrollar naves que lleven astronautas a la ISS

Los planes de la NASA de ‘subcontratar’ sus viajes a la Estación Espacial Internacional (ISS) están más cerca de ser una realidad. Esta semana, la agencia aeroespacial de EE.UU. presentó los avances de su Programa de Tripulación Comercial.

Fue el primer acto público conjunto con sus dos socios en esta aventura, las empresas Boeing y SpaceX. Ambas fueron seleccionadas el pasado mes de septiembre para desarrollar naves y sistemas seguros, fiables y eficientes para llevar astronautas a la ISS desde plataformas de lanzamientos estadounidenses.

Según la directora del programa, Kathy Lueders, “ambas compañías ya han conseguido hitos importantes”. Boeing contempla una prueba de lanzamiento abortada para febrero de 2017, seguido de un vuelo sin tripulación en abril de 2017 y un vuelo tripulado por un piloto de Boeing y un astronauta de la NASA en julio de ese mismo año.

El calendario de SpaceX lleva más adelanto: su primer lanzamiento abortado será dentro de un mes, y un vuelo abortado en algún momento de este año. El primer vuelo no tripulado será a finales de 2016 y la primera prueba con tripulación se prevé para comienzos de 2017.

El director de la NASA, Charlie Bolden, celebró el avance del proyecto: “Es un gran testamento del ingenio y el saber hacer estadounidense, y valida la visión que tuvimos hace algunos años cuando nos preparábamos para el final de los transbordadores espaciales”.

Ahorro de costes

El programa de transbordadores se cerró en 2011 y, desde entonces, la NASA ha tenido que depender de las naves rusas Soyuz para poner a sus astronautas en órbita. Una de las grandes ventajas del proyecto con Boeing y SpaceX -una de cuyas prioridades es proporcionar naves reutilizables, como lo fueron los transbordadores- será el ahorro de costes. Se calcula que llevar un astronauta a la ISS le cuesta a la NASA 71 millones de dólares, que van a parar a Roscosmos, la agencia espacial rusa. Con su nuevo ‘puente aeroespacial’, el precio por billete podría caer a entre 20 y 30 millones de dólares.

“No quiero volver a firmar un cheque para Roscosmos a partir de 2017”, dijo Bolden el pasado lunes, según la cadena NBC.

La reducción de costes podría tener un efecto más amplio que el de facilitar el trabajo a la NASA. “Las compañías podrán ofrecer servicios de transporte espacial a ciudadanos, compañías e instituciones, lo que podría convertirse en una nueva industria para el sector aeroespacial estadounidense”, dijo la agencia en un comunicado.

En el plano científico, las nuevas naves permitirán que la tripulación de la ISS se amplíe hasta siete astronautas estadounidenses o cosmonautas rusos, lo que se traduce en que se duplicará el tiempo disponible para desarrollar investigación: podrán hacerlo 80 horas a la semana, en lugar de las 40 horas actuales.

La ‘subcontratación’ de estos servicios también permitirá a la NASA esforzarse en objetivos más ambiciosos y lejanos en el tiempo: entre ellos, llegar a Marte, con el desarrollo del cohete Space Launch System y de la nave Orión. Las previsiones de la agencia para que una misión tripulada visite el Planeta rojo se sitúan en la década de 2030.

“Cuesta mucho trabajo salir de este planeta y muchísimo más llegar a Marte”, dijo Bolden.